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Course Objectives

Understand uncertainties in control systems

Teach the theory and practice of the mainstream techniques, to
design control systems with uncertainties, in

Adaptive control
Online parameter estimation/learning
Robust control

Prerequisites:
ELE6202 Multivariable Systems (or equivalents)
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Evaluation

Project: 2 graded project reports (35% each)
Oral Exam/Presentation: 30%

Grading:

For late submission: -10% if late for each day
Submit individually;
Not allowed to share the final reports or detailed methods

Generative Al tools are allowed.
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Schedule

Adaptive Control (Sastry & Bodson, Ch. 1,2,3,5)
Lecture 1: Introduction to Uncertainty & Adaptive Control (3h)

Lecture 2: Real-Time Parameter Estimation (3h)
Lecture 3: Online System Identification (2h)
Lecture 4: Model Reference Adaptive Control (6h)
Lecture 5: Robustness of Adaptive Systems (2h)

Robust Control (Scherer's notes)
Lecture 6: Robustness for SISO Systems

Lecture 7: Stabilizing Controllers, Generalized Plant Concept
Lecture 8: Robust Stability Analysis
Lecture 9: Nominal and Robust Performance Analysis

Lecture 10: Synthesis of H,, Controllers
Advanced Topics (TBD, if time allows) & Presentation
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© Elements of Linear Systems Theory
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Systems and Signals

Linear Time-Invariant, Finite-Dimensional Systems
& = Az + Bu, z(0) = zg
y=Cx+ Du

with state u € R”, input u € R™, and output y € R?.

x,y and u are signals: functions of time ¢ € [0, 00) that are
piece-wise continuous.

Notations: z(-) denotes the signal as a whole, and x(¢) is the
value of the signal at ¢.

Solution:

t
y(t) = Ceizg +/ Ce=%) B(s)u(s)ds + Du(t), Vt > 0.
0
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The system has the transfer matrix/function G(s) defined as

G(s)=C(sI — A)~'B+ D, (2)

which is a matrix whose elements consist of real-rational and
proper functions in s.

The fundamental relation between the state-space model and
frequency domain representation is studied in realization theory.

G(S) = Cg(SI = Ag)_lBG + Dq,
A feasible realization (A¢g, Bg, Ca, D) and minimal realization
(controllable & observable).

View the system as a device that processes signals from input
u(+) to output y(-).
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&= Az + Bu Realization
y=Cz+ Du G(S)
Laplace Transform
y(t) = [y Ce*t=9 Bu(s)ds + Du(t) 9(s) = G(s)a(s)

We use the symbol (NOT a partitioned matrix!)

G A|B z| | A|B x
| C ’ yl | C|D||u
both for the mapping u — y as defined via the differential equation

with initial condition 0, and for the corresponding transfer matrix G.
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Operations for Realization
Suppose we are given

. Al|B . A1 Bl o A2 BQ
G_{C D}’ Gl_[cl Dl}’ Gz_[cz DJ'

If G1 and G5 have the same dimension, their sum has a
realization

A 0 By

Gi+Gy=| 0 A Bo
Cy 02‘D1+D2

If the number of columns of (G} is equal to the number of rows
(9, their product has a realization

A1 3102 B]_D2
GiGa=| 0 Ay | By
C1 DiCy | D1D;
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Operations for Realization (cont’'d)

If D is invertible, then G~ exists, is proper and has a realization

o1 A-BD'C | BD™!
- -D~'C | D

Suppose that the square transfer function G has a proper
inverse. Then, G(o0) is invertible.

A square matrix has a proper inverse <= G(o0) is invertible. )
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Controllability & Observability
Recall the PBH test:
(A, B) is controllable <= the full rank of

[A— X B], VieC
(A, C) is observable <= the full rank of

A— NI
C

} , YAeC

(A, B) is stabilizable <= the full rank of
[A—)\I B], YA e Cso

(A, C) is detectable <= the full rank of

A—AI
C

], V)\ECZO

14 / 53



Stability of LTI Systems (Frequency Domain)

A transfer function matrix H(s), whose elements are real rational
functions, are stable if

H(s) is proper (i.e. no pole at c0)?; and
H(s) has only poles in Cg.

“Equivalently, the degree of the numerator < the degree of the denominator.

Remarks
Strictly proper: replace < by <, equivalently,
limyy o0 H(s) = 0.
Engineering meaning: pure differentiator H(s) = s (not proper)
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RH_, Space

For the set of real rational proper and stable matrices of dimension
k x m we use the symobol

RH®™ or RH,,

latter when the dimensionality is clear.

Close under 3 operations
A scalar multiple of one stable transfer matrix
Sum of two stable transfer function matrices

Product of two stable transfer function matrices
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Quizz

Which of the transfer functions are proper?

s+1 5 59

g1(s) = Ss_1 g2(s) =

What is the value of g1 (s) at infinity?
What is the value of C(sI — A)~'B + D at infinity?

Which of the following rational matrices have a proper inverse:

1o 1oL 11
S S S S
RN | R [

s+1 st—-1
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Stability of LTI Systems (Time Domain)
A state space model (A, B,C, D) is said to be stable if

VA {A} € Cop.

Relation (Frequency and Time Domains)
The state space model © = Ax + Bu, y = Cx + Du and the corre-
sponding transfer function matrix G(s) = C(sI — A)"'B + D have
the following relations:
If the state space model is stable, then G(s) is stable.
Conversely, if G(s) is stable, (A, B) is stablizable and (4, C) is
detectable, then the matrix A is stable.
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Summary of System Descriptions in this Course

A quadruple (A, B,C, D) of matrices defines the state-space
system [time domain]

&= Ax+ Bu, y=Cx+ Du, z(0) =z

which is considered as a map from u(-) to y(+).

The quadruple (A4, B,C, D) is also expressed as [time domain]
[ A|B
Y=l clp|"

4(s) = G(s)u(s), G(s):=C(sI —A)'B+D

In frequency domain

An operator G with any realization (A,B,C, D) s.t.

y(t) = Glu(t)].
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Useful Norms for Signals & Transfer Functions

Bounded vector-valued signal u(-) (maximal amplitude/peak):

[ulloo = sup [lu(?)]| < oo
>0

Integral signal u(-) (energy):!

s = /0 ()24t

BIBO stability is related to [Jull2 < 00 = ||y|l2 < co. Intuitively,
we consider the energy-to-energy gain

ol | |
’Yenergy = Sup T = UmaX(G(]w)) = HG(]W)H
0<||u||2<oo ||UH2 can prove

For a stable transfer function matrix

|Glloc = sup |G (jw)-
weR

A signal with a large energy can have a small peak and vice versa.
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© Uncertainty
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Uncertainty

Differences always between the actual system and the model

Unknown parameters and parameter variations

U
_____________ e e e = = — — maU
I Center of gravity

Aircraft: Inertial change due to fuel consumption

Takeoff and landing weights for a Boeing 777-300ER from Montreal
(YUL) to Paris (CDG) [Generated by ChatGPT]

Parameter Value

Distance 5,550 km
Takeoff Weight (TOW) 300,000 kg
Landing Weight (LW) 240,000 kg

Fuel Burned 60,000-70,000 kg
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Unmodeled nonlinearities in the linear model

Synthesized controller may be different from implemented
controller (Simplification for control implementation)
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Detailed model — low-order simpler model for control synthesis

Motor driven Electric Vehicles (Input in model: Torque
via ignoring motor dynamics; Actual input: Voltage)

Unmodeled dynamics: at high frequency both structure and
order of model are unknown.
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“A control engineer calls this mismatch uncertainty. Note
that this is an abuse of notation since neither the system nor
the model are uncertain; it is rather our knowledge about the
actual physical system that we could call uncertain.”

— Carsten Scherer
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Classes of Uncertainty

Parametric (real) uncertainty.? The structure of the model (in-
cluding the order) is known, but some of of parameters § =

T .
[01, .. .,05] are unknown or uncertain.

&= A(0)x + B(0)u
y=C(0)z+ D(O)u

The vector 6 is unknown and possibly time-varying.

Dynamic (complex/frequency-dependent) uncertainty. The model
is in error due to missing dynamics, usually at high frequencies.

A
wa ZA T = Az + Biwa + Bou
za = Ci1z + Diywa + Diou
G(s) y = Coz + Da1wa
U Y
wa = Aza

“Petersen & Tempo, Automatica, 2014.
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Classes of Uncertainty (cont'd)
Dynamic uncertainty can be further classified into:

Unstructured uncertainty. Roughly, a single constraint on
wa = Az, t)za
Norm bounded uncertainty:
[A(z(2),1))lloe < 1

Bounded real uncertainty: the transfer function matrix A(s)
satisfies the bounded real condition ||A(s)|le < 1, e.g.

Addictive, multiplicative, and normalized coprime factor
uncertainty

Positive real uncertainty: A(s) s.t.
A(jw) + A(jw)* = 0, Yw
Negative imaginary uncertainty:

J(A(Gjw) — A(jw)*) = 0, Yw >0
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Classes of Uncertainty (cont'd)

Structured uncertainty. Roughly, multiple constraints on uncer-
tainty.
Structured singular values uncertainty

Ay
A—
Ay

Integral quadratic constraint (IQC) constraint in time-domain:

T T
/|wA(s)\2dt§/ l2a () Pdt + d
0 0

IQC constraint in frequency-domain:

*

/OO {ZAA(%]:)))} (jw) [gfﬁgsﬂ dw >0

— 00

More details for dynamic uncertainty in the second part of the course.
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Standard Regulation & Tracking Problems

For the given plant G (possibly with uncertainty), consider the
feedback interconnection

y=Gu, u=K(r—uy)

with the controller K.

Standard goals in designing K
Stabilize the interconnection
Output y tracks r well, i.e. the norm ||y — 7| is small enough
Control action u should not be too large

Constant r: regulation; Time-varying r(t): tracking.
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Our approaches

This course covers both parametric and dynamic (possibly structured
or not) uncertainty:

Parametric uncertainty: Adaptive Control (“Adapt on the fly")
Dynamic uncertainty: Robust Control (“One design fits all")
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Outline

@ Introduction to Adaptive Control
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Introduction

Tune to adjust for proper response?

Adapt to adjust to a specific use or situation

Autonomous independence, self-governing

Learn to acquire knowledge or skill by study, instruction or expe-
rience

Reason the intellectual process of seeking truth or knowledge by
inferring from either fact of logic

Intelligence the capacity to acquire and apply knowledge

In Automatic Control

Gain scheduling - adjust controller parameter based on direct mea-
surement of system and environmental parameters

Automatic tuning - tuning on demand

Adaptation - continuous adjustment of controller parameters based
on regular measured signals

2The introduction part is mainly from Karl J. Astrom's lecture.
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Brief History of Adaptive Control

Adaptive control: learn enough about a plant/process and its
environment for control — restricted domain, prior info
Development similar to neural networks

Many ups and downs, lots of strong egos
Early work driven adaptive flight control 1950-1970.

The brave era: Develop an idea, hack a system, simulate and fly!

Several adaptive schemes emerged no analysis

Disasters in flight tests — the X-15 crash Nov 15 1967

Gregory ed, Proc. Self Adaptive Flight Control Systems, 1959.
Emergence of adaptive theory 1970-1980

Model reference adaptive control emerged from flight control
stability theory — a tracking problem

The self tuning regulator emerged from process control and
stochastic control theory — a regulation problem

Microprocessor based products 1980
Robust adaptive control 1990
Machine Learning and Adaptation 2020
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Publications in Scopus

Pubications per year

0 F
1 0 1 1 Il 1 1 Il
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
Year

Control vs Adaptive Control
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Pitch Control of Aircraft

80
= 60
\\\ % 40
7N 3 o ]
. 2 3 4
SN =
. 20
AN o
AN o, 0O,
5 }
0 0.4 0.8 1.2 1.6 20
Mach number

Eigenvalues of dynamics matrix
FC1: -14, -3.07, 1.23
FC2: -14, -4.90, 1.78
FC3: -14, -1.87, 0.56
FC4: -14, -0.83+4.3i

24
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Block Diagram of Adaptive Systems

Adjustment

Controller

Parameters

Setpoint

Controller

Plant
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Intuition
To obtain a progressively better understanding of the plant (for
control), we need an identification technique.
Intuitive to aggregate system identification and control

If system identification is recursive — models are periodically up-
dated using previous estimates and new data — identification and
control may be performed concurrently.

Roughly speaking,

Adaptive Control =

(non-adaptive) Control Scheme + Recursive System Identification
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Some Landmarks
Early flight control systems 1955
Dynamic programming Bellman 1957
Kalman's self-optimizing regulator 1958
Dual control Feldbaum 1960
System identification 1965
Self-optimizing control Draper Li 1966
Learning control Tsypkin 1971
Algorithms MRAS STR 1970
Stability analysis (Lyapunov, passivity) 1980
Industrial product 1980
PID auto-tuning 1982
Robustness 1985

Autonomous control 1995

Adaptation and machine learning — a renaissance 2015
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A Simple Example (MIT Rule)

Consider a first-order LTI system

k

v =Gls)lul = ——[u

with known a > 0 and unknown k > 0. Our target is a design a
feedback to make the closed-loop satisfy the model

Ym = M (s)[u] = [u]

If £ was known, we use the proportional control with gain 6, = %

In MIT rule, we design the output error e(0) = y,,, —y(0) and optimize
the cost function J(0) = 262 It yields ay(e) 8(S+a) [u] /00 = kynm,
and the gradient of J is @ = —keym. Hence, we select the gradient
dynamics

0 = —veym, ~ >0 (Adaptation gain)
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How can we get proven properties (stability,
convergence, and beyond)?
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© Review on Stability
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Barbalat's Lemma

If f(t) is a uniformly continuous function, s.t.

lim /t f(s)ds < o0,

t—o00 0

then f(t) — 0 as t — oo.

Corollary

If
9,9 € Lo, and g € L,

form some p € [1,00), then g(t) — 0 as t — oo.

Norm: [[ull, = (fy* [u(s)[Pds)? and [[ulloe = supysg [u(t)]

Space Ly := {f(#)[[f[lp < oo}

42 /53



Differential Equations

The system
= f(x,t), x(tp) =z0 € R"
is said to be
autonomous or time-invariant, if f does not depend on ¢;
time-varying, otherwise.
linear, if f(x,t) = A(t)x;
nonlinear, otherwise.

has an equilibrium point x,, if f(z,t) = 0.

Lipschitz Condition
The function f is Lipschitz in z, if for some h > 0, 3¢ > 0 s.t.

[f(21,8) = fl@2, )| < Llzr — 22|, Var, 22 € By, 2 0.

The Lipschitz constant £ = existence and uniqueness.
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Lemma (Bellman-Gronwall)
Let z(-),a(-),u(-) : Ry - R4, and T > 0. If

2(t) < / a(r)e(r)dr + u(t), Vt € [0,T], (3)
0
then
x(t) < /0 a(T)u(T) exp </T a(a)do> dr +u(t), vt € [0,T]. (4)

When u(-) € C1,

2(t) < u(0) exp ( /O ta(a)do*) + /0 () exp < / t a(a)da> dr
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Stability

The equilibrium z = 0 for & = f(z,t) is
stable, if Yty > 0 and € > 0, 35(to, €) s.t.

|zo| < d(to,e) = |z(t)] <€, VE > to.

uniformly stable, if z = 0 is stable and d is independent of .
asymptotically stable, if z = 0 is stable and attractive, i.e. Vtg,
Hé(to) s.t.
|zo| <6 = lim |z(t)| = 0.
t—o0

uniformly asymptotically stable (UAS), if z = 0 is uniformly
stable and x(t) converges to 0 uniformly in to. l.e., 30 > 0 and a
function v : Ry x R™ — R4, s.t. lim o0 (7, 20) = 0 for all z¢ &

|£L‘Q| <jd = |a:(t)] < 'y(t — to,xo), Vitg > 0.
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The equilibrium = = 0 for & = f(x,t) is
Globally asymptotically stable (GAS), if x = 0 is asymptotically
stable and lim;_, |2(t)| = 0, for all zp € R"

Uniformly globally asymptotically stable (UGAS) ...
Exponentially stable, if 3m,a > 0 s.t.

|z(t)] < me~ ) |xg|, Vag € By, t >t >0

and the constant « is called as the rate of convergence.
Globally exponentially stable (GES) ...
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Comparison Functions

Class KC function: A function o : Ry — Ry belongs to class
KC, denoted as « € IC, if it is continuous, strictly increasing, and
a(0) = 0.

Class K function: It is said to belong to class Ky if
lim, 00 (1) = 0.

Class KL function: A continuous function 8 : [0,a) X [0,00) is
said to belong to class KL if

for each fixed s, 3(r,s) € K w.r.t. r;

for each fixed r, 5(r, s) is decreasing w.r.t. s and lims_, oo (7, s) =
0.

v
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Positive Definite Function, Decrescent Function
A continuous function V(z,t) : R" x Ry — R is called

locally positive definite function (l.p.d.f)? if, for some h > 0 and
some a(-) € K

V(0,t) =0and V(z,t) > af|z|), Vze Bp, t>0.

positive definite function (p.d.f), by replacing the above
llvx E Bhll by H\v/x G Rn,, .

decrescent, if 35(-) € K s.t.

V(z,t) < B(|z]), Yo € By, t > 0.

“Imagine like an “energy function”.
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Example
Consider the functions below.
V(z,t) = |z|%: p.d.f., decrescent

V(z,t) = 2" Pz with P = 0: p.d.f., decrescent
V(z,t) = (t+ 1)|z|% p.d.f.

V(z,t) = e~!|z|?: decrescent

V(z,t) = sin?(|z|?): l.p.d.f., decrescent
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Lyapunov Stability Theorems

Consider the system @ = f(x,t) and a candidate Lyapunov function

V(x,t) € C! with

oV (x,t) N oV (x,t)

Then,
Conditions on V' (z,t) Conditions on —V'(z,t) | Conclusions

l.p.d.f. > 0 locally stable

|.p.d.f., decrescent > 0 locally us

l.p.d.f. l.p.d.f. AS

|.p.d.f., decrescent l.p.d.f. UAS
p.d.f., decrescent p.d.f. UGAS

2 <V(x,t) < 2
(11’.73| = (LU, ) = a2|x] < 7a3|x’2 GES

|0V /0x| < aglx|
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Linear Time-Varying (LTV) Systems
Consider the LTV system
& = A(t)zo, =(to) = o,
whose solution satisfies
x(t) = ®(t,to)xo.

The state transition matrix ®(¢,%y) € R™*" is the unique solution to

L (1, t0) = AW 10), Blto,10) =1,

and satisfies the semigroup property
B(t, to) = B(t, 7)B(7,t0), Vt>T7>to,

thus ®(t,t9) "' = ®(to, 1).
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LTV Stability

For the LTV system & = A(t)x,
x=0is UAS <= z =0 is exponentially stable.
x=0is ES. < Jsome m,a > 0 s.t.

1 (%, to) || = m exp(—a(t —to))

forallt >ty > 0.

Uniformly Complete Observability (UCO)

The system
t=A(t)r, y=C(t)x

is called UCO if 3 strictly positive constants 31, 82,0 s.t., Vi > 0

Bol > W(t,t+0) > 1l

with observability gramian W = [*° &7 (r,£)CT (r)C/(7)®(r, t)dr.
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What have we learned today?

Review the representation of LTI systems (state-space & transfer
matrix)

Sources and classification of uncertainty
Introduction to adaptive control
Review the elements of stability theory

Homework
Read (Sastry & Bodson, Chapter 1) - Preliminaries.
If you have time, also read (Sastry & Bodson, Chapter 0).
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Outline

© Background of Parameter Estimation
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Wide Applications

Mathematics

Statistics — Estimation theory
Biology — Medical statistics
Economics — Econometrics
Control — System identification
Signal processing

Numerical analysis

Physics
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System Identification: The Control View!

How to get the models
Physics - white boxes
Experiments - black boxes
Combination - grey boxes
How to do the experiments (data)
Experimental conditions - excitation
Fit and validation sets
Model structure
Transfer functions
Impulse responses
State models
Parameter estimation
Statistics
Loss function - likelihood
Validation
Adaptive control
Estimate and control simultaneously
1This part is from K.J. Astrom’s slides.
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System ldentification

Non-parametric methods
Bode or Nyquist diagrams
Step or impulse responses
Parametric methods

Transfer functions
Sampled models

Output error OE: A(q)[z] = B(q)[u], y = z + e with ¢ :== &
Transfer function: H(s) = A]\;((?)

Moving average

Autoregressive: A(q)[y] =e

Autoregressive with external input: A(q)[y] = B(q)[u] + e
Autoregressive moving average with external input (ARMAX):

A(@)y(k) = B(q)u(k) + C(q)e(k)

Methods suitable for adaptive control
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Estimation Theory

Special branch of statistics
Unknowns parameters 6, observations y

The likelihood function p(A|Y") is the probability density of the
observations y given the parameters 6

Log likelihood function L(0|Y") = log p(0|Y’)

Consistency - parameters converge in probability as sample size
goes to infinity

Cramér-Rao lower bound?

Efficiency - estimate achieves the Cramér-Rao bound when sample
size goes to infinity>

2|t relates to estimation of deterministic but unknown parameter 6, i.e. the
precision of any unbiased estimator is < the Fisher information ().

3Harald Cramér, Mathematical Methods of Statistics, 1946.
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System ldentification

Classic 1955 —

Step or impulse responses

Frequency response - transfer functions

Spectrum analyzers - measure transfer function directly
Adaptive control 1959 —

Estimate parameters in real time

IFAC Symposium on Adaptive Control Teddington 1965
Identification 1965 —

State space models

Sampled models

Strongly influenced by statistics
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Maximum Likelihood Estimation

Let 6 be the unknown parameters and Y all observed measurements.
The likelihood function L(6|Y") is the probability density function of
the observations Y given the parameters

LOY) = p(Y']0).

It is useful to deal with the loglikelihood function
L(0)Y) = logp(Y|0). The maximum likelihood estimate is

0= argmeinL(0|Y).

The Fisher information matrix I has the ¢, j-th element

S2L(A]Y)

g =—E"55.06,

which is a lower bound of the covariance of the estimate.

In this course, we focus on deterministic approaches.
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Outline

© Least Squares and Regression
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Date Back to Gauss Original Work 1809

THEORIA
MOTVS CORPORVM
COELESTIVM
SECTIONIBEVS CONICIS SOLEM AMBIENTIVM
CAROLO FRI [:‘I:_Ji ICO GAVES

(T

Lt

Priority dispute: in the history of statistics is that between Gauss and
Legendre, over the discovery of the method of least squares.
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Regressor Model
y(t) = H(¢(t),0) + e(t)
y(t) € R™ - observed data

6 € R™ - unknown constant parameters
¢ (proper dim) - known function

e € R™ - residuals (small)

Linear Regressor

y(t) = 67 (10 +e(t)

¢
¢

with ¢(t) € R"*™.2

It can be viewed as the LTV system

=0, y(t)=¢"(1)0.

1(8)01 4 - .. + dn(t)0n + e(2).
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Offline Solution
Consider the linear regressor

Using the historical information, we have Y (¢) = ¥(¢)0 + E(¢).
Our target is to minimize, with respect to 6, the cost function

<
—
)
~
N—
Il
N | =
M
o
—~
~.
S~—
N
Il
N | =

where
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Theorem (Least-Squares Theorem)

The parameter 0, that minimizes the cost function are given by the
normal equations

s, =o'y, (1)

If ' ® is nonsingular, the miniumum is unique and given by

0, = (O uTy,

This is a well-known result in any textbooks on linear algebra or
matrix theory.
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Proof.
The cost function can be written as

2V(0,t) =E'E = (Y —U0)" (Y — Uh)
=YY - Y0 —0"UTY + 070 wg.
Complete the square
WO, =YY —YT00-0"0TY +0" 0w Two
+YTo@ ') ey —yvTew o) leTy
=Y '[I-v@ o) Ty

+ @ -0 uTwE@ - () e Ty).
Therefore, the minimum

min 2V (0,t) =Y (I —w(v ") 'w Ty

is assumed for 6, = (U T &) 1Ty,
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Example: Least Squares Estimation

y(t) = by + bru(t) + bou’(t) + e(t)

. = 0.1

) =1 ut) w*(t)
07 = [by b1 bo]

Estimated models by = 1,07 = 0.5,b2 = 0.1,0 = 0.1

Model 1: y(t) = by

Model 2: y(t) = by + biu

Model 3: y(t) = by + byu + bou?

Model 4: y(t) = by + byu + bou? + bzu?

Model bo by by b3 2V o2
1 3.85 - - - 3446
2 0.57 | 1.09 - - 101
3 1.11 1 0.45| 0.11 - - 3.1
4 1.13 1037 | 0.14 | -0.003 2.7
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Output

Output

Cost function smaller with more parameters, when to stop?

Input

Output

Output

=23

=)

Input

(=2}
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Recursive Estimators

Consider the linear regression model:

y(t) = ¢' (t)8. (2)

Idea: find a formula that expresses
in discrete time, (¢) in terms of 6(t — 1); or
in continuous time, 6(t) is a solution of the dynamical system

0 = B0, y(t), 6(t)), 6(to) = bo.

Purposes:
Recursive computation of estimate as data is obtained is very
useful for adaptive control
Track (slowly-varying) parameter variations

In this course, we study 1) Gradient Algorithms and 2) Recursive
Least Squares Algorithms
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Gradient Algorithms

Consider the linear regressor

y(t) =o' ()0 (3)
with constant, unknown 6 € R™, and available ¢ € R"” and y € R.

Standard Gradient Algorithm [Important!]
The update law

6= o0 (ST ()8 —y(t), 6(to) = . (4)

~ > 0 - Adaptation gain (constant)

0o - Initial condition is arbitrary.

Adaptation gain v > 0 allows us to vary the rate of adaptation.
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y(t) =o' (1)

Define
Estimation error 0(t) := 0(t) — 0
Output error e := ¢ ()0 — y(t).
We want to minimize the cost function

J(0,1) = le(0, 1)/,
whose gradient is

VaJ(6,t) = 20 = 26(¢ 6 —y) —> 0= ~1v

It can be viewed as steepest descent.
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If the regression ¢ ¢ Lo, we have

_ T 9 Yy _ ¢T(t)
=0 Vitaldf  Jitall
4(t) AT (1)

Alternative 1: Normalized Gradient Algorithm

Y Th
—m¢(¢ 0 —y)

with constant parameters v > 0 (adaptation gain) and « > 0.

6 —

¢

It is equivalent to the standard, with ¢ replaced by —=—.

V1talgl?
For the normalized estimator, RHS is globally Lipschitz in ¢,
even when ¢ is unbounded.
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Alternative 2: Normalized Gradient Algorithm with Projection

Sometime the parameter 6 is known a priori to lie in a set © C R"
(closed, convex and delimited by a smooth boundary). Modify as
if 0 € int(©
g il A ©)
. TA . T
PrO_J _W¢(¢ 0 — y) if 6 € 8@ and €¢ gperp <0
with
int®, 0O - Interior and boundary of ©
Proj[z] - projecting z onto the hyperplant tangent to 0O at ¢
BOprep - UNit vector perpendicular to hyperplane, pointing outward
4

*Summary of projectors design: E. Lavretsky, T.E. Gibson, and A.M.
Annaswamy, ArXiv 2012. (https://arxiv.org/pdf/1112.4232)
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Example (Simple Projection)

A priori bounds p;” and pj' are known, i.e.
07 € Ipi 07l
The update law is then modified to

éi=0 if@in;andéi<0

or Hizpj and 6; > 0.
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Properties of Gradient Algorithms

Linear regressor: y(t) = ¢ ' (t)0

Gradient estimator: 6 = —y¢(¢0 — y)
Linear error equation: e := ¢ 6 (= 16— Y)

Theorem (Properties of Standard Gradient Estimator)

Consider the above gradient estimator with v > 0 and the regression
function ¢ : Ry — R™ piecewise continuous. Then,

Output error e € Loy
Estimate error 6 € Lo, (bounded estimate)
Monotonicity: |6(t,)| > |0(ty)], for all t, > t, > 0.
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Proof.
The dynamics of the estimate error 6:=60—0is the LTV system

= —76(t)¢" ()6. (5)

Select the Lyapunov function V(f) = 1076. Its derivative is
V=—v(¢"0)2=—e?<0.

It means ft (s)ds < 0, thus V(A(ty)) — V(A(t)) < 0, equivalently
the third item. This also leads of the boundedness in 2).

Since V is positive and monotonically decreasing, the limit V(c0) is
well define and

V(00) — V(0) = /Ooo V(s) = — /Oooe(s)2d8 < 0.

Therefore, e € Ly verifying 1). [ |
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Theorem (Properties of Normalized Gradient Estimators)

Consider the linear regressor y(t) = ¢' (t)0 with ¢ € PC[0,00) and
the normalized gradient estimator

jo T aeTh—

Then,
€
V1talel?
5€Loo and i@GLgﬁLm
€ LoN Ly

€ LoN Ly

B = s

The error dynamics is

0=——"" 066, v>0.
|¢\2
Its proof can be found in (Sastry & Bodson, page 64).
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Gradient Estimator with Decaying Perturbation
Theorem (Effect of Exponentially Decaying Term)

Consider the perturbed linear regressor
y(t) = ¢ (£)0 + (t)

with €(t) is an exponentially decaying term. Then, the theorems on
standard and normalized gradient estimators still hold true.

v

Modify the Lyapunov function to
A Lats [T 2
V(o) = 29 0 + 4/t e“(r)dr.
Then,
. ~ ~ ~ 1]
V=168~ (60— 1 = (670~ 5o <0.

It follows a similar proof procedure.
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Persistency of Excitation (PE)
We derived the output error e € Ly and 0 € L.

How can we achieve () — 0 as t — 00?

Related to the LTV error dynamics

6=—16()¢" (£)6, +>0

in the form of . ~
0=—A(t)0

with A(t) € R™*™ positive semidefinite (p.s.d.) for all ¢.

A(t) uniformly p.d. with Apin(A + AT) > 20 = Exp. stability
Unfortunately, such is never the case, since

rank (¢p(t)p' (1)) =1<n Vt.
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Definition (Persistency of Excitation)

A vector-valued function ¢ : Ry — R™ is persistently exciting (PE) if
dag, s, T > 0 s.t.

t+T
aol = / ¢(T)¢T(T)d7 =aql, Vt > 0.
t

Interpretation

Though ¢¢ " is singular for all 7, the PE requires that ¢ rotates
sufficiently in space that the integral of ¢(7)¢ ' (7) is uniformly
p.d. over any interval of length T" > 0.

Re-expressing in scalar form

t+T
ag > / lpT (D)z|>dr, Vt>0, |z| =1.
t

Condition on energy of ¢ in all directions.
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PE vs Uniform Complete Observability
The PE condition: dag, a9, T > 0 s.t.

t+T
ool = / o(1)o" (7)dT = ayl, ¥t > 0.
t

)
The uniform complete observability (UCO) of the LTV system
6=0
y=0¢'(1)0

ie. A(t)=0and C(t) =o' (t)
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Theorem (PE and Exponential Stability)

Consider ¢ : Ry — R” that is piecewise continuous. If ¢ is PE, then
the zero equilibrium of

6= —16(t)¢" (£)6, 7> 0 (6)

is globally exponentially stable.

The converse claim is also true. It is necessary and sufficient.
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Before proving the theorem, we need the following lemma.

Lemma
Assume V6 > 0, dks > 0s.t. Vi >0

t+T
[ k@I <k
t

Then, the system (A4,C) is UCO <= (A+ KC,C) is UCO.

Moreover, if the observability gramian of (A, C) satisfies
Pl = W(t,t +0) = ful,

then the observability gramian of (A + KC, C) satisfies these inequal-
ities with identical § and

/Bl — /81
S VksBa

B4 = B exp(ksf2).
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Proof of Theorem (PE & Exp Stability)
Consider the Lyapunov function V = |02 s.t. V = —27|¢ 0> <0,

T t+T :
/t Vdr = 2y /t (67 ()B(r)2dr.

By the PE assumption, the system (0,¢'(t)) is UCO. Under
output injection with K(t) = —~v¢(t), the system becomes

(=76 (1), 0" () with
t+T +T
ks = /t lyd(7)|?dr = +*Tr [/t d(De(H) T dr| < ny2as.

By the lemma, the system (A + KC,C) is UCO. Therefore, Vt

2By
1+ /nyae

Gramian of (A+ KC,C) < |(1)[?
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Proof (cont'd)

By?
t+T X )
‘/ Vir < ——229 o)
¢ 14+ /nyay
and the following (integral-type) Lyapunov stability theorem (see next
slide), we complete the proof. [ |

?For the system (A, é’), the observability gramian is defined as
AT
Wo(to, to +T) = / " (s,t0)C " (5)C(5)®(s,to)ds.
to

The UCO condition
kil = Wo(to, to +T) = kol

is equivalent to

to+T
mmmfz[ IC(s)x(s)Pds > Eala(to)|”.
to
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For the system & = f(z,t). If 3 a function V(z,¢) and constants

ki,ko, k3,0 >0, s.t. Ve € By, t >0

k:1|x|2 <V(zx,t) < k:2|x|2

oV 19)%
- - <
5 (x,t) + 5 flx,t) <0

t+96 d 5
/t Ly (w(r), 7)dr < —kslz(t)|2.

dr

Then, z(t) converges exponentially to 0.

Estimating exponential convergence rate

1 1 1
a=——In
o7 |1 Zar
1 (1+v2nva2)?

Increasing the gain v > 0 cannot make it arbitrarily fast.

When ~ is sufficiently small, the rate « o< v approximately
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Least Squares Algorithms

Regressor y(t) = ¢ ' (t)0

Estimation error 6(t) := () — 6

Output error e := ¢ ()0 — y(t).

Gradient estimator optimizes J(6,t) = |e(0,t)[?

Intuition: Least Squares Algorithms

Find the parameter 6 to minimize the integral-squared-error (ISE)

ISE :/0 e*(s)ds :/0 (67 ()0 — y(s))%ds

The estimate of # may be obtained from

1580, =2 [ 65 (67 (50 - y(s)) ds =0
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The least squares estimate is given by

a0 = [ o) " [[emons)

if the inverse exists, and 0=0.

To get recursive formulations, let us define

1

([ s67s)
([ o))

—[PTH0)] = oo ().
SCalculation 4 [P~!(t)]: Since

dt
d d 1

d —1 d -1
= SIPOIPT (0 + PO [P (@)

so that?®
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Then,

d

to -1
P=-PL[PT'|P=-Po(t)¢' ()P, Plt)= ( i ¢<s><f>T<8>> :

The least-square estimate can be represented as

t
bus = P(0) [ os)yls)ds
0
whose dynamics is

bus = —Po(t)o" (t)0hs + Po(t)y(t)
—P@e(t) (¢ ()0 — y)
= —Po(t)e(t)

6

5In practice, the recursive least-squares algorithms starts with arbitrary initial

condition at to = 0.
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Recursive Least Squares Estimator

0=—1Po(t) (4710 —y). 0(0) =y

P =Q—~Po(t)¢" (t)P, P(0) =Py > 0.

Adaptation gain v > 0
Design parameter @ = 0 (usually @ = 0)

Viewing the regression model as the LTV system
0=0
y=2¢'0.

RLS estimator is nothing but just the well-known Kalman-Bucy filter.
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In the Standard RSL estimator with Q = 0,

. d
P=—yP¢¢' P = —(P71) =700

Covariance Wind-up: This means that P~! may become unbounded as
t — 0o and thus P~! may become arbitrarily small in some directions
— adaptation becoming very slowly.

Least-Squares with Forgetting Factor
=Py (670-y), 6(0)
YP(AP — ¢¢' P), P(0)=PFy >0

Z bo
P

o Lp1y =, (f/\P’l + ¢¢T)

BIBO stability from ¢¢' to P!
Another possible remedy: covariance resetting. P(t,) = kol
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Normalized Least-Squares Estimator
__ PesTi—y)
1+ a¢p' Po
: Pogp' P
P=——————— PO 0
1T adTPo’ (0) =
with fixed parameters v, a > 0.

The modification with forgetting factor can be combined to avoid
covariance wind-up.

RLS is complicated but has faster convergence rates compared to
the gradient estimator.
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Theorem (Normalized LS Estimator with Covariance Resetting)

Consider the regressor y(t) = ¢ ' (¢)0 with the normalized LS estimator
with covariance resetting

_7P¢(¢Té —y)

1+ a¢TPo
Poop' P

- ”m’

and v,a > 0, t, := {t|Anin(P(t)) < k1 < ko}, and ¢ € PC|0, c0).
< € Ly N Lo

\/1+agpT Pd
$ € Loo, ¢ € LoN Log

__ ¢
ﬂ—wELgme

0=

P(0) = P(t)}) = kol

6
Moo
If ¢ is PE, the estimate 6 satisfies lim;_,o [0(t) — 0] =0 (exp.).

The proof is given in (Sastry & Bodson, pages 67 and 75).
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System ldentification

To identify an LTI system

& = Ax + Bu
y = Cz + Du,

we need to represent the unknown “parameter” § = (A, B,C, D) in a
regression model.

We will study it next week.
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What have we learned today?

Motivation and formulation of real-time parameter estimation
Regressor models and least squares problem

Recursive estimator

Gradient algorithm (standard, normalized, projection),

J(0) =y —¢" (1)0)?

Recursive LS (standard, normalized, with forgetting factor,

covariance resetting), , J(0) = [o [y — ¢ (s)0]%ds
Pesistency of excitation (PE)

Stability properties of online estimators

Homework
Review the slides; Read (Sastry & Bodson, Ch. 2.3-2.5 and pp.
48-50)
Find a regression model and numerically test two estimators in
Matlab, Julia or Python (preparing for your first report).
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Online System Identification

We are concerned with the following questions with SISO systems:
How to parameterize a system to get a linear regressor?
How to generate the data to satisfy the PE condition?

How to online estimate these parameters? [Solved in the last
lecture]

Measurements . Model
>  |dentifier
u,y
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Problem 1: Plant Parameterization

Given an unknown SISO plant

= Az + Bu
y = Cx + Du,
or represented in the frequency domain
i(s) n(s)
~ ::f{() = ,
a(s) m(s)

we have the measurements (u,y) and unknown parameters 6 included
in (A, B,C, D) (or equivalently the coefficients in n(s) and m(s)).

Can we get a linear regressor
Y(t)=¢'(t)0

to estimate these parameters 67 (y has been used for plant output.)
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Technical Challenges
No access to the internal state =

Overparameterization: n-dimensional SISO systems

State space model has (n + 1)? parameters (n? in A, n in B and
C,and 1in D)
Transfer function has 2n parameters

018" +...+80,
9n+15n + ...+ 927,,

H(s) =

No access to derivative ©. For the special case that we have z,

- o)

=0T
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Problem 2: Data Generation (ldentification Input Design)

In order to be able to identify € online, we require ¢ persistently excited.

Can we operate the plant (A4, B,C, D), or equivalently H(s), to gen-
erate {u,y} such that ¢ is PE?

Technical Challenges
Reformulate the PE condition of ¢ into some requirements on
u(t);
Operate the plant safely; Input should not be too large. [Not the
focus of our course]
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Some Definitions of Transfer Function

Monic: a polynomial in s is monic if the coefficient of the highest
power in s is 1

Hurwitz: if its roots lie in C<
Stable: transfer function has its denominator polynomial Hurwitz
Minimum phase: if the numerator polynomial is Hurwitz

Relative degree: difference between the degrees of the denomina-
tor and numerator polynomials

Proper: relative degree > 0

Strictly proper: relative degree > 0
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Assumptions

Plant Assumptions A
SISO LTI system, whose transfer function P(s) = () i

> p(s)
P(s) = kp=
2 dp(s)

7(s), Up(s) - Laplace transforms of input/output

(), dp(s) - monic, coprime polynomials of degrees m and n
n is known, but m is unknown
Plant is strictly proper m < n —1

We do not assume the stability of the plant.
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Reference Input Assumptions
Input r(-) is piecewise continuous and bounded on R .

Bounded Output Assumption
The plant is located in a control loop such that r,y, € L.?

“This can be further relaxed as the regular signal assumption. (Sastry &
Bodson, page 70).

Objective: Estimate k, and the coefficients of the polynomials

ip(s), dp(s) from measurements of input r(¢) and output y,(t) only.
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Generating Linear Regression Models

Parameterization of Unknown Plants

Transfer function P(s) can be explicitly written as

<

p(S)_“S:

with 2n unknown coefficients.

s+ Bus™ T+ + B

>

Express as the linear regressor

s"p(s) = (ans"t 4+ ) 7(s) = (Bas™ 4o+ Br) ()

n—1 4 .. .
(07°%] + + a1 (1)

v

Not practical: Require explicit differentiations to be implemented!

11/ 41



Introduce a monic n-th order Hurwitz (but arbitrary) polynomial

~

As) = 8"+ Aps" L+ F AL

Then, from

this leads to a linear regressor, but 7,(s) and czp(s) are not proper!
To address this implementation issue, we rewrite it as

Ms)dp(s) = kpip () () + (A(s) = dp(5))Gn(s),

or equivalently

n_l .« .. —_— n_l ... —_—
ansS + + aq (s ()‘n Bn)s A+ + ()‘1 51) gp(s)‘
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s Vb oy
ip(s) = - S (s)+

A(s) A(s)
Define the polynomials

a*(s) = aps" 1+ +ay

b"(s) = (An = Bn)s" " 4+ 4 (A1 = Bu).

and (unknown) parameters

New representation
The plant can be equivalently represented as

()‘n - Bn)sn_1A+ ot ()‘1 - ﬁl)gp(s)
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Linear Regressor Form

X a(s) . b*(s) .
S) = — r(s)+ = S
yp( ) As) (s) A(s) yp( )
1
S 1 1
=6 ——(s) +6, —Up(s
A0s) (s) +0, A(s)yp( )
Snfl Snfl
a0 (s) w5 (s)

Rewrite in time domain leading to a linear regressor
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How can we obtain wy(t)?

State space realization can be found in controllable canonical form

u')p2) = Awf) + by
with? -~ _
0 1 0 0
0 1 0 O
A= : : : T : by = :
0 0 o .- 1 (1)
__)\1 — D\ 0o 900 _/\n_

with initial conditions w’"(0), w'? (0).

?Recall
1

sI—A) 7ty = =
( ) 36)
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Implementation

We have the state-space realization of wy:

(Y = AwD + byr

p p
W = Awl? + bry,.

However, we do not have the initial condition w,(0) € R?".

Filter Design
™ = Aw® + byr
0® = Aw® + by,

with w(0) € R?"™, which only uses the available signals r, y,,, without
knowledge of the plant parameters.

v

Hurwitz A = tli)m |w(t) — wpy(t)| =0 (exp.)
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Implementation (cont'd)

With the available signals 7, y,, apply the filter

M = Aw® + byr
w? = Aw® + brYp-

with w(0) € R?" leading to the (perturbed) linear regressor

y(t) = w(t)' 8+ €(t)

with the error €(t) exponentially decaying to zero.

Use the gradient estimator

6— —yww'd—gy), ¥>0

or the RLS estimator to estimate 6!
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Identifier Structure 1: Error Equation ldentifier
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Different ways to get regression models:
Equation error identifier (discussed)
Output error approach (Landau, 1979)
Model reference approach (Luders & Narendra, 1973)

5 e —

Model Reference Reparameterization

Modifying the reference model through feedback 13)1*((55)) and feedforward

&;(f’)) action, so as to match the plant transfer function.

21 /41



Homework 1

Numerically test the first identification structure and
the gradient estimator for your model.
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Further Assumptions

Reference Model Assumptions
The reference model is an SISO LTI system (selected by us)

A Tom (8)
M(s) = kp—
(s) 7 (3)

i (8), dpm (s) are monic, coprime polynomials of degrees I, k < n.
M (s) is strictly proper

Its relative degree is no greater than the relative degree of the
plant P(s), ie. 1<k—Il<n-—m

dpm(s) is Hurwitz

Postive Real Model
M (s) is strictly positive real. [Show you def later.]

Objective: Estimate polynomials a*(s), b*(s) <= estimate P(s)
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Polynomial A(s)
The polynomial A(s) is a monic, Hurwitz of degree n — 1.
Similar role as that in the equation error identifier.

The zeros of A(s) should contain those of 7, (s) in the reference
model:

As) = M (8)Ao(s)

with another monic, Hurwitz polynomial 5\0(3) of degree n—[—1.
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Yp

Theorem (Model Matching)

There exist unique a*(s) and b*(s), in the above figure, such that the
transfer function  — y, is the plant transfer function P(s).
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Proof.

Existence. The transfer function r — y, is given by

. A kmfim . . 2
p(s) — Gli* dnL _ a*kmnm _ kma*
Ps)  A1- ka—m% Ay, — kb Aodi, — kmb*’
which equals to P(s) iff
< T
Modm — kmb* = ~2d, L (C1)
p  "p

The problem is therefore to find polynomials a*, b* of degrees < n—1.

A solution can be found by inspection. Divide Nodom by ch : denote by
q the quotient of degree £k — [ — 1 and let k,,b" be the remainder of
degree n — 1. In other words, let

Xodm = Gdyy + kmb*.
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This defines b* appropriately. Eq. (C1) is satisfied if a* is

. kp ..
a* = —=—gny,

K

The degree of the polynomial in RHS is m + k — [ — 1, which is at
most n — 1 by assumption, s.t. the degree requirements are satisfied.

Uniqueness. Assume that 3a* + da, b* + b satisfying

P . - km - (64 da
Nodm — ki (5 + 6b) = fm g (a+08)
P Np
We find that A )
0 _ M _ _p
5b d,

Recall that ﬁp,dp are assumed to be coprime, while the degree of dp
and 0b are n and at most n — 1, respectively. Therefore, Eq. (C1)
cannot have any solution. |
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L(S) =apy+a* " (sI —A) by
A(s)

D) e T (5T — ATy
A(s)

parameters ag, by € R and a*,b* €
R"~! (Same A, by, as previous but
with different dimensionality)

Filter:
D = Aw® + byr
w? = Aw® + bryp

Yp

The filter dimension is lower than that in the error equation identifier

— saving in computations.
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The regressor vector ¢ is
o) = [r(t) wOT(R) ypt) w® (1) eR
and the parameter vector 6* := [af a*T b b*T] € R™"

The signal coming into the reference model M(s) is

I {ffjf@ v b*(s)@p@)} =67 ()0

The output of M(s) is y,. Therefore,!

up(t) = N [67 (1)0]

It is similar to the linear regression model, but with the transfer
function M.

!We omit the exponentially decaying term stemming from the filter.
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SPR-based Linear Regressor

The equation

yo(t) = N |67 ()0

is a linear regressor with a strictly positive real (SPR) transfer function.

Questions:
What is SPR?
How to verify SPR?
Any properties for SPR transfer functions?

How can we design an online estimator for SPR-based linear
regressors?
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Positive Real Function

We require M (s) to be strictly positive real (SPR), then get the SPR
regression model:?

Definition (Positive Real)

A rational function M (s) of the complex variable s = o + jw is
positive real (SR), if

M(o) e R forallc € R

Re[M (o + jw)] > 0 for all 0 > 0, w >0
It is strictly positive real (SPR) if, for some e > 0, M(s — €) is PR.

>The SPR/PR originates from Network theory. A rational transfer function is

the driving point impedance of a passive network iff it is PR.
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Criterion for SPR

(loannou & Tao, 1987) A strictly proper function M(s) is SPR if and
only if

M (s) is stable

Re(M (jw)) > 0, for all w > 0

lim,, 00 w?Re(M (jw)) > 0.

For example, the transfer function

~ s+c
MO = erae+n

is SPRisand only if a > 0,b>0and a+b>c > 0.
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Positive Real Lemma

Let
G(s)=C(sI — A 'B+D

where (A, B) is controllable and (A, C) is observable (i.e. (A, B,C, D)
is @ minimal realization of G(s)). Then, G(s) is positive real 3P =
PT =0, Land W s.t.
PA+A'P=-L"L
PB=C"-L'W
W'W=D+D".

Kalman-Yakubovich-Popov (KYP) Lemma

In the above lemma, G(s) is strictly positive real if and only if we
replace the first equation with

PA+A"P=—LTL—¢P, forsome €>0

33 /41



Gradient Estimator for SPR-based Linear Regressors

We have the linear regressor
uplt) = M |07 (1)0] .

with M (s) SPR.

Gradient Algorithm with SPR
The gradient

0 = —16(t) (M [67 (18] - ()

with the adaptation gain v > 0.

The SPR error equation e = § —y := M|[¢' 0] — y is
e= N [¢T(t)é]

with 6 := 0 — 6.
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Since M(s) is SPR, a state space realization is

with (A,b,¢") a minimal realization of M (s) and e,, its internal state.

Theorem (Stability of SPR Gradient Estimator)
Assume ¢ : R, — R?" piecewise continuous. The above realization
guarantees

em,e € Lo

€m, €, 0 € Lo

If ¢ is PE and qb,q'ﬁ € Lo, then the above system is globally
exponentially stable.
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Proof.
M(s) is SPR, thus 3P,Q > 0 such that

PA+ATP=—-Q
Pb=c

Consider the Lyapunov function
V= 'ye;P@n +076,
whose derivative is
V= 'ye;PAem + ’ye;Pb¢T5 + ’ye;ATPem
+ ¢ 0b" Pey — 2v¢ e T

= —ve,TnQem <0

The first two claims follow immediately. The last point can be found

in (Sastry & Bodson, page 86). [
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Outline

@ Some Remarks on Persistency of Excitation
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Lemma. PE through LTI Systems
Let ¢ : R, — R™. If

¢ is PE, and ¢, € Lo

H(s) is a stable, minimum phase, rational transfer function,
then H[¢(t)] is also PE.

Lemma. PE and Ls Signals

Let ¢1, P2 : R — R™ be piecewise continuous. If
¢1 is PE
¢2 € Lo

then ¢1 + ¢ is PE.
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Reference Input Design

Exponential convergence of estimation error 8 builds upon the PE
of ¢, but the reference input to the plant is r(¢).

¢ € PE < r is sufficiently rich of order 2n.

A single sinusoid in the input r contributes 2 points to the spec-
trum: at fwg.

If (t) is stationary and sufficiently rich of order 2n, the identified
parameter 6 (gradient or normalized LS estimator with covariance
resetting) will converge to 6 exponentially faster.

Any ideas on the design of identification references r in experi-
ments?

Frequency domain conditions (Sastry & Bodson, page 90)
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What have we learned?

Parameterization of a given plant

Error equation approach
Reference model (or SPR error equation) approach

Given a plant G(s), how to generate a linear regressor?
Positive real function

Positive real and KYP lemmata

SPR gradient estimator

Sufficient Rich Input

Homework
Read Ch2 of (Sastry & Bodson); Understand the sufficient
richness on page 92.
Verify if your selected plant satisfies the assumptions.

Start your first report — applying the learned two approaches to
identify your plant and doing simulations
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Additional Reading Materials

PE condition is necessary and sufficient to the GES of

0=—o(t)s" (10

See for the GAS case:

N. Barabanov, R. Ortega, On global asymptotic stability of & = —¢(t)¢ " (t)z
with ¢ not persistently exciting. Syst. Control Lett., 109 (2017): 24-29.
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Adaptive Control

Adaptive control: a technique of applying system identification
techniques to obtain a model of a plant and its environment and
using this model to design a controller.

Large basket of tools: for LTI systems, the most popular may refer
to

Self-tuning regulator (STR)

Identifier-based: separate the estimation of unknown parameters
from the design of controllers (certainty equivalence principle)

Model reference adaptive control (MRAC) — our focus

Behavior of the controlled plant remains close to the one of a
desired model, despite uncertainties or variations in the plant.
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MRAC: Direct Approach

U

Ym
Model
Controller parameters Adjustment
mechanism
Controller v Plant

Controller parameters are adjusted directly
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MRAC: Indirect Approach

Model

Controller
parameters

Controller

Plant

Controller parameters are adjusted indirectly by first estimating
parameters of a plant/process model and then designing a controller
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Motivating Example

Consider the plant
- k
P(s)= —*
s+ ap

with k,, a;, unknown. We design a reference model

& km
M(s):s+a , G, >0

and hope that the given model can behave like the reference model.
We may apply the control
u(t) = cor(t) + doy(?)

with 7(t) the reference input of M(s).

Two models are matched <— ¢y = %:, do =
(unknown)

ap—am

kp
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cont'd
Direct parameterization: Viewing the controller parameters
co, do as the unknown parameters, i.e.
T
0 = [Co do]

)

it belongs the direct approach.
Indirect parameterization: Viewing the plant parameters k,, a,
as unknown parameters, i.e.
-
0= [kp ap]

and using 6 to solve the controller parameters ¢y, dy, it belongs
the indirect approach.

Caveat: It is convenient to divide the algorithms into direct and
indirect, but the distinction should not be overemphasized.
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MRAC: Input-Error and Output-Error

In model reference adaptive control (MRAC), we need to generate
a linear regression equation on the unknown parameter vector 6, or

equivalently an error equation.

Two basic approaches to get error equations:
Input Error
Output Error
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Outline

O Model Reference Adaptive Control Problem
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Assumptions
Plant: The plant is a SISO LTI system

=P

Ap(s)
dp(s)

) _ ps) = by

ﬁp(s),dp(s) are monic, coprime polynomials of degree m and n
Strictly proper and minimum phase?

The sign of the high-frequency gain k, is known (w.l.g. k, > 0).

Reference Model:

9m(8) _ wrig) — g, Pom(3)
7(s) =M(s) kmczm(s)

P (5), dm (s) with the same orders as plant (i.e. n and m)
Stable and minimum phase and k,,, > 0

Reference signal: r(-) € PC[0,00) N L.

“Plant may be unstable.
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Model Matching

Model Reference ldentification Model Reference Adaptive Control
”””””””””””””””””””””””” M(s) |
R
r [} u P(s)
3
T Yp |
&)
A(s)
A(s)

e ‘ Controller structure: linear
combination of 7, u, ¥y,

T

[ i) des)
YL Xe el Y
Yp
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Control Objectives

The reference model M (s) — under the reference input r(t) — will
generate the reference output

We want to design a control u(t) for the plant P(s) such that
all the states are bounded

the plant output y, asymptotically converges to the reference
output yp,, i.e.

i [y (1) — ()] = 0.

if possible, we can estimate some unknown parameters.
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Transfer function from 7 to y,
d(s)

From
U= cor + =
A(s

A d
cor + X (yp)

we have
“ = =
A—¢
Combining y, = kp%:(u), we have
;f, _ cokip)\ﬁp ] Z M{(s) = km"?m
T (A= 8)dp — kpipd m
A necessary condition: A(s) is Hurwitz (for implementation) and can

be decomposed into X X
A(s) = Ao(s)7un(s)
with \o(s) an abribtrary Hurwitz polynomial of degree (n —m — 1).
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Matching Equality
Theorem
There exist unique cfj, ¢*(s), d*(s) s.t. the transfer function from r —

yp is M(s).

v

Proof. x

(Existence) TF r to y,, is M <= matching equality is satisfied

2 a k., ~ o
(A = &)dp = yipd® = 6§ Mo (S1)

The solution can be found by inspection. Divide Aodm by d,, let q
be the quotient (of degree n — m — 1) and —k,d* the remainder (of
degree n — 1). Thus, a feasible solution is

Km
k'

i = kl (ddy —Sodm) . & =A—dnp, o=
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cont'd

(Uniqueness) Assume dcg = ¢ + dcg, ¢ = ¢* + d¢, d = d* +6d
satisfying (S1). The following equality must then be satisfied

dédy + kynpdd = —660:—p5\0ﬁpcfm (3.2.10)

Recall that cip, Tp, Ao and d,,, have degrees n, m, n —m — 1 and n,
respectively, with m < n — 1, and ¢ and dd have degrees at most
n — 2 and n — 1. Consequently, the RHS has degree 2n — 1 and LHS
has degree at most 2n — 2.

No solution exists unless dcyp = 0, so that ¢ is unique. Let, then,
dcg =0, so

oc n .
— = —k,-£ =P,
od Tp
which has no solution since 7, d,, are coprime. |
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Remarks

The coprimeness of 7, cip guarantees the uniqueness.
Otherwise, there still exist feasible solutions.

When model matching occurs, the forward block actually cancels
the zeros of P(s) and replaces them by the zeros of M(s), i.e.

A A0

A—c* qnyp

Alternative structures: (Callier & Desoer, 1982)

it f(s)
@0)
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Linear Parameterized Controller

M(s)
€o v @s() yp
&ls) |
Als)
d(s)
S > S
r
X r m(s) 0,
d(s) _ T1 | AGs)
ol [5 [0 < b 417
p (s
" oL
()
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State-Space Realization

Recall
_ 1 T
sI— A7y = = 1 s gnl = (s
( )" b A0) [ ] (s)
with ~ _
0 1 0 0 0
0 0 1 0 _
0 0 0 1 (1)
A1 =g —An |
We have )
f(s) =c'(sT —A)7tby
A(s)
d(s) T —il
~ =d'(sI —AN)""by+d
A6) ( )" bx + do
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The state-space realization is

w1 = Aw + bu
1[)2 = AwQ ol b)\yp

and the controller is

u=¢' (t)0
where
o r
@ on w1
0:=1| .| €R™", t) o=
p o0 = |
d* w9

No plant model or information of 6. Instead, we use
u=¢' ()0

We need to design online identifiers and get the error equations.
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Outline

© Output Error Direct MRAC
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Input Error vs Output Error

In direct adaptive control, identification is designed directly iden-
tifying the the controller parameters

0 = col(cg, ¢*, do, d”).

To get linear error equation, we may define

Output Error: The difference between the plant output ¥, and
the reference output

€0 = Yp — Ym = Yp — M]|r]

Input Error:

with 7, = M~(

~
£
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Matching plant and reference model requires the matching equation

where we used A(s) = Ao ()i (s).
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Applying to the plant input u:

*

3 = ctypidt | SO Tl g o B(t) = o
0op A(s) M) T AL v
5T ()0

Note 6 = col(cj,#). Thus, we have an SPR regressor-like equation:

1 . -
Yp = %M[u - ¢T9}

Caveat:
M (s) is strictly positive real (SPR) — relative degree 1
Unknown ¢

True for any u
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Output Error Equation (Relative Degree 1)

Select the input u as the predefined structure
ut) =¢'0
with 0 the estimate of 6.

Identifier error equation:

1 . .
eozyp—ymz—*M[u—quH]—M(r)

Co
- %M (o~ ctyr+ 670 87)
- C%M[w(t)é(t)]

with the estimation error § := 6 — 0

Gradient identifier 9 = —yeo.
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Output-Error Direct MRAC (Relative Degree 1)

Plant: P(s), relative degree 1, Assumption Al (known direction
k, > 0, strictly proper, minimum phase)
Reference signal: r(t), A3: PC[0,00) N L
Control Law:
w1 = Awy + byu
w1 = Awa + bryp
u=¢" ()0, ¢=-col(r, w1, Yp, W2)

Adaptive Law:

0 = —veop, v >0
€o =Yp — Ym, ym:M[r]

Design parameters:
Adaptation gain v > 0
Reference model: M (s) satisfying A2 (stable, minimum phase)
Filter parameters: A, by s.t. det(s] — A) = 7y (s)
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Stability for OE Direct MRAC (Relative Degree 1)

Theorem
The output error direct model reference adaptive control, summarized
above, guarantees that:
(Lyapunov stable) All signals in the closed-loop plant are
bounded;

(Asymptotic convergence of OE) Output tracking error e,
converges to zero asymptotically for any r € L, i.e.?

im [y (£) — ()] = 0.

t—00

If ¢ is persistently exciting (PE), then the adaptive system is
exponentially stable and

lim |A(t) — 0] =0 (exp.).

t—00

?Attention: Not a claim on asymptotic stability!
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State-Space Realization

To prove the above theorem, we need to write down the state space
realization of the closed-loop dynamics.

The plant ]5(3) has a minimal realization (Ap,bp,c;), thus the plant
and the filters are given by

Ty = Apzp + bpu
Y = c;xp
11)1 = Aw1 + b>\u

Wy = Awg + bxc;,r.rp

with the control

uw=¢'(t)0.
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Define x := col(zp, w1, wz) and write compactly as

X:AOX—FBCU
yp:CcX
with
A, 0 0 by
A, = 0 A 0], Be.:= |by
bAc; 0 A 0
Ce:=1[cy 0 0]

The input = qﬁTé, so we add and subtract the desired input ¢ ' 6:

X=AXx+Bcp'0+B( u—0'0 )
N———
adaptation error
= AmX + Bmcir + Be(u— ¢ ' 6)

Without the last error term, it would become the reference model!
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Hurwitz Stability of A,
That is?

M(s) = Coo(sI — Ap) " Bpc.
Note that this is not a minimal realization.

However, using the matching equation to calculate the transfer
function, by avoiding cancellation, its denominator is

cb - dm(s)A(8)o(8)p(s)

The additional term is ;\(s)j\o(s)ﬁp(s) is stable. Hence, A, is
stable.

The reference model (not minimal realization) is

Xm = Ame + BmCZT-

“The matrices (A, Bm,Cn) can be found in (Sastry & Bodson, page 135).
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Overall Closed-Loop Dynamics

Defining the state error e := x;,, —x and the parameter error 6:=0—0,
and the output error e, := Y, — yp, the overall dynamics is

- L. =50l
e = U

with B}, := B¢

It looks like LTV, but it is not! This is because ¢ is indeed a
function of states.
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Proof. (Stability of OE Direct MRAC, Relative Degree 1)

Since the reference model M (s) is SPR, using the MKY Lemma (the
version of KYP lemma for non-minimal realizations): 3P,, = P,

vector ¢, a small constant p > 0 and L. = LCT > 0 s.t.

PLA, + A;Pm = —qq' — pL.
P,.B, = Cp.
Select the candidate Lyapunov function

1 v~
V(h,e) =€ Ppe+ =00,
Y
then 9 _-
V=—e'qq e—pe' Lee+ QeTPmB;nqué + 266
Y
= _equTe — peTLce <0.

It leads to 67, e € L.

a
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Integrating V' and taking t — oo,
V(oo) = V(0) = / <—equTe - peTLce) dt.
0

Since V(00) = limy_,00 V(¢ ) is bounded, we have e € Ly. It is also
straightforward to show ¢ = A,,e + B! d)( )9 € L. According to the
Barbalat's lemma, the signal e(¢) — 0 as t — 0. Note that ¢, = C)ye,
thus we have

Jim [ym(t) — up ()] = 0.

In the identification part, we have shown that if ¢ is PE, then 6§ — 0
exponentially as ¢t — 0.2 |

“Here, it is not practically useful to impose the PE condition on the
intermediate signal ¢. Instead, we are more interested in the conditions on 7(-).
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Strict Lyapunov Function x
We are indeed interested in the stability of the system

H - {va(t)P Boo(t)} [Z}

If B,(t) is PE, selecting a sufficient large p > 0, we may select the
following strict Lyapunov function, via Mazenc's method?

V(t,e 0) =p (eTPe + i\§2> — e B,(t)f

_iﬁ<AmgﬂBdﬂU%ﬁmﬁé

satisfying : 3 3
ay|col(e, 0)]? < V(t,e,0) < as|col(e, §)|*

V(t,e,0) < —as|col(e, §)|?

?(Loria, Pantely & Maghenem, 2020)

33 / 62



Output Error Direct MRAC (Relative Degree >1) %
For the case of relative degree one, the output error is
1 T4
€o 3:yp_ym—7 (¢ 9)
o

We impose the condition on relative degree, since we need the
SPR of M(s) for stability proof.
It can be saved for higher relative degree!

Modifier SPR Output Error

ML[TQ po ve]

O

Co
= L7Y(¢)
= —ve.,v Modified SPR gradient

]|

iy
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0 = —ve'v Modified SPR gradient

L(s) is designed by us to make M (s)L(s) SPR
Its inverse L(s) is stable, minimum phase of relative degree
n—m-—1

We may verify
6; =Yp — Ym t¥Ya
N’

€o
with the augmented error:

Yo = SNIL (B~ 0TE Y@+ po e,

Co

In the Input-Error method, we need not consider relative degree!
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Outline

@ Input Error Direct MRAC
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Input Error Equation: Motivation

~

Output Error: e, := yp — Ym = yp — M|[r]
Input Error: ej:= M~(e,) = M~ (yp) — 7 :=71p — T
Different ways to obtain error equations (or linear regressors).

In OE, we use the matching equation to get

A ~ A k. ~
(A= &)dy = kyipd® = 5 Moo
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In IE, we apply an arbitrary input u to the second last equation:

u— (éf[u] + df[yp]> = My

By fixing u = ¢ "0 = é,r + q_ST(t)é we have

gb@ ér—l—qS@—cOM Yy,
- éo(Mi ) [ yp ]9

Input error: e; A (t)

(Preliminary) Input Error Equation

1 _
€; = gd)I (t)@
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Input Error Equation: Motivation

This is the motivation of IE equations, but it is not implementable:
Relative degree of M(s) is at least 1, so its inverse is not proper.
(Make sense in analysis but not implementable)

In order to get the IE error equation, we fixed u = ngTé. This
is not crucial, but can be avoided to decouple identification and

control.
We are careless about the initial condition, since the plant P(s)

may be unstable.
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Implementable Input-Error Equation

~

M (s) is minimum phase with relative degree n — m, so we may
select any stable minimum phase TF L' of relative degree
n — m, then

A A

(ML)~! is proper and stable.

and

A A A

Lt [rp] = (ML)_I [Yp]

which is implementable.
In the motivating case, we have

~

ot

1= ) AN oy 1 (s)P(s)

Als)  Als)
Applying L~1(s)[],
71 sy, C(s) 71 CZ*(S) Y 71 —1| p
L= (s)=L""(s) ) ( )X(s) + (M (s)L™(s)) " | P(s)
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We are able to use L~! to deal with the unstable poles of P(s).

Applying to an arbitrary input u(t), we have

Tx A

Lilx[yp] + (ML) ] = L u] — i*l%[u] +e(t)

Since 6 := col(c}, 0) is constant, we may take it outside the TF:
P68 = L1570
=Lt é; u| — T*
[/\ [u] 3 [yp]]
= L7 u] = 5 (ML) [yp] + €(t)

Implementable Input-Error Regressor

A

L7 u] = oT ()8 + €(2),

with
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Input Error Identifier Structure
We define the modified input error

eo =0 ()0 — L7 (v)

which satisfies the linear error equation

eo =0 (£)0+ €(t).

All signals here are available.

When obtaining the linear error equation, we do not fix
u = ¢ ' — decoupling identification and control!

Useful in the presence of actuator saturation.

42 /62



Input-Error Direct MRAC
Plant: P(s), relative-degtee 1, Assumption Al (known direction

kyp > 0, strictly proper, minimum phase) and A4

Bound on the High-Frequency Gain k,
Assume that an upper bound on £k, is known, i.e.

kp < kmax .

Reference signal: r(t), A3: PC[0,00) N L
Control Law:
W, = Aw1 + b,\u
Wy = Awa + bayp
u = ¢T(t)éa ¢ = COl(Ta Wi, Yp, w2)

43 / 62



Identifier Structure:
v (t) = [(ML)" [ pl L7Mwl) L'yl L™'w]]]
ei =0 ()0 — L7 [u] (Input Error)
Adaptive Law (Normalized Gradient with Projection):
SV LA otherwise
i—) T app

0 ifép<0oréy= g

€ =UYp — Ym, ym:M[r]

Design parameters:
Adaptation gain v > 0
Normalization parameter o > 0
Reference model: M (s) satisfying A2 (stable, minimum phase)
F|Iter parameters: A, by s.t. det(sI — A) = A, ()
L1 stable, minimum phase TF of relative degree n — m

Normalization & projection are important for stability!
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Stability of IE Direct MRAC

Theorem

Consider the input error direct MRAC described above, with initial
condition in an arbitrary By. Then,

(Lyapunov stable) All internal states are bounded;

(Asymptotic convergence of OE) Output tracking error e,
converges to zero asymptotically for any r € L, i.e.?

lm [y (t) = yp(t)| = 0.

t—o00

If v is persistently exciting, then the adaptive system is
exponentially stable and

lim |A(t) — 0] =0 (exp.).

t—o00

?Attention: Not a claim on asymptotic stability!
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Sketch of Proof
Full proof can be found in (Sastry & Bodson, page 143) and
(loannou & Sun, page 390).

Step 1. Regressor bound & existence of solutions

From the properties of the projected, normalized identifier, we have

[078] = 1BO)o( )l + 1B()]

v’ o
Bi=— 7 ¢ IhNLy
1+ H ()lloo
§e Lo, € LonLe
0(t)] < 6(0)]
Co > Cpin > 0 (due to projection)

Similar to the OE case, the closed-loop dynamics can be “viewed” as
an LTI system with an LTV controller and bounded feedback gains —
solutions are well-defined.
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Sketch of Proof

Step 2. Express the plant input & output in terms of control error ¢ ' 6

1 . -
Yp = Ym + 7M(¢T9)
Co
. 1 -
u=P'M (r + *¢T0>
Co

Define an auxiliary signal mff =1+ |lul|®> + ||lyp||* with Loe-norm in
some interval, we have

my < c+cll¢ "]
Using the Swapping Lemma for TF, we have

Ty ¢ *N ||
1676l < Zomy + cogllgmyll

with 3% := €2n? + |0]? + €2 € Ly. (Tricky for this step)
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(Swapping Lemma) Let $,0 : Ry — R" and 5 e Cl. Let ﬁ(s) be a
proper rational TF. If H(s) is stable, with a minimal realization
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Sketch of Proof

Step 3. Apply the Bellman-Gronwall Lemma to establish boundedness.

From the last step, we may get
t

mfv <c+ c/ a§2”§(7—)2mfc(7)dr.
0

Using the B-G lemma and g € L, we have my € Lo,. Then, consider-
ing all the transfer functions, we can show that all signals are bounded.

Step 5. Show tracking error e, := yp, — Ym — 0.
Check e, € Ly and é, € L, and apply the Barbalat's lemma.
Step 4. Verifying § — 0 if v is PE.
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Comparison: IE vs OE

Traditional starting point in MRAC is to study e, := yp — ym
Stability proof in OE-MRAC requires the SPR condition of ]5(3)

Limited to the systems with relative degree 1
Otherwise using the augmented error (complicated and
non-robust)

IE-MRAC does not have this issue.

Error term:

OE error equation relies on the input equal to u = gZ)T(t)é
IE error equation can use arbitrary inputs (still work under
saturation)

Decoupling identifier and controller (possible to replace the
gradient estimator by other estimators)
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Outline

© Indirect Adaptive Control
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Indirect Adaptive Control

Use the identifier in the last lecture to estimate plant parameters
kpa ’pr(S), dp(S)
Use the matching equation to compute the controller parameters
co,&(s), d(s) )
""""""""""""""""""""""""" M(s) |
r u (—(}) L Yp
o P(s) T
GRS NY
) |
As)
d(s)
Als)
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Recall the plant

(Ynsn_l + P + (‘1/'1
s+ st 4+ By

$>

() _ oy
=P

Introduce a monic n-th order Hurwitz (but arbitrary) polynomial

(<33

~

As) = 8"+ Aps" L+ 4 AL

Then, from
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Or equivalently

Lot
p(s) = ) P(s)+ )

()‘TL - Bn)snil:i_ s ()\1 - 51)@}7(8),

with the associated the plant parameters

a:[al an], b:[/\l—ﬁl )\n—ﬁn].

Linear Regressor
Using the filters

w1 = Awg + byu
wg = Awy + byyp (Shared by Identifier & Controller)

We have the linear regressor on unknown parameters [a' b']T.
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For simplicity, we define

Plant parameter 1) := [a1,. .., ami1,0,...,b1,..., by "

“Perfect” control parameter

0 := col(cy,0) := [ch,c1y s Cnydiy .-y dn) T
Attention:

No dy term here!
Since the relative degree of ]5(3) is known, we needn’t estimate
Am+2y - - -

Linear Regressor (cont'd)

with
(bw = col(wl,l, e ,wl,m, 0, .. ,0, ’wQ)
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Indirect MRAC

Plant: P(s), relative-degree 1, Assumption Al (known direction

k, > 0, strictly proper, minimum phase) and A4

Bound on the High-Frequency Gain k,
Assume that an upper bound on k,, is known, i.e.

kp> kigin > 0.

Reference signal: r(t), A3: PC[0,00) N L

Control Law:

w1 = Aw + bu
W = Awy + b)\yp

u=¢"(t)0, ¢ = col(r,wi,wa) (No y,!)

Be careful about the dimensionality.
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Identifier Structure:

(ﬁl = C0|(w171, N ,wl,m, 0, e ,wg)

GZQSTﬁ_yp

Adaptive Law (Normalized Gradient with Projection):

ePw

R
1 +P’¢w’2

If Gypy1 = knin and dmy1 < 0, then let d,qq = 0.
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Design parameters:
Adaptation gain v > 0
Normalization parameter p > 0
Reference model: M (s) satisfying A2 (stable, minimum phase)

Filter parameters: A, by s.t. det(s] — A) = A(s) and A = Agii,

Translating Identifier Parameter — Control Parameter

Define § := %
o 1
C=A— = qa
Am+1
. 1« oo
d= (G — b — Aodi)
am41
R K,
by —
0 am+1
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Stability of Indirect MRAC

Theorem

Consider the indirect MRAC described above, with initial condition in

an arbitrary By,. Then,
(Lyapunov stable) All internal states are bounded;

(Asymptotic convergence of OE) Output tracking error e,
converges to zero asymptotically, i.e.

i ym(t) — up ()] = 0,

and the regressor error converges to zero.

See (Sastry & Bodson, page 341) for proof.
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Why need the sign and upper bound of £,7?

In MRAC, we need to identify ¢ or %:
If we identify % (as done in indirect MRAC), the input
u =&+ ¢ (t)f will be unbounded if - — 0

The sign and lower bound on % (i.e. those of k) help

us avoid the zero-cross issue with projection.
If we identify ¢o (in direct MRAC), then

t0=0,0=0 — u=0,¢=0

No adaptation will occur 6 =0, although v, — ¥, does
not tend necessarily to zero and may even be unbounded.

To avoid this above issues, we require the sign and upper bound of k,.
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Discussions

Alternate Model Reference Schemes: Flexible by combining vari-
ous identification and control structures !

Adaptive Pole Placement Control: Choose a particular reference
model

Ni(s) = b 28 a(s) = i (s).

Only assigning closed-loop poles — 7,(s) is replaced by its es-
timate in the reference model M(s). The matching equation
becomes a Diophantine equation

(A = &)d, — kphpd* = <c* P > Ay,

which is not always solvable, unlike MRAC.

1G.C. Goodwin & D.Q. Mayne. A parameter estimation perspective of

continuous time model reference adaptive control, Automatica 23.1 (1987): 57-70.
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What have we learned?

Model reference adaptive control

Reference model
Similar control structure
Different identifiers

Direct MRAC

Input error direct MRAC

Output error direct MRAC (relative degree 1)
Indirect MRAC
Stability:

Asymptotic convergence for general reference r(t);

Exponential stability with PE.
Same stability and convergence properties for these three schemes

IE Direct MRAC and Indirect MRAC are attractive:

Linear error equations
SPR conditions
Decoupling between identification and control
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Outline

@ Structure and Unstructured Uncertainty
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Parametric and Unstructured Uncertainty

Designers do not have a detailed model:

Too complex
Not completely understood of its dynamics
Model reduction

For stable systems, we may obtain Bode diagrams.

Data beyond a certain frequency wy is unreliable —
measurements are poor (noise)
Referred as high-order dynamics — wish to neglect

log | B(jw)|
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Adaptive Control vs (Non-adaptive) Robust Control

Assume the goal is the following: select a reference model M(s) such
that the plant output y,(t) tracks the reference output y, ().

Non-Adaptive Robust Control: Use poor data at high-frequencies to
get a nominal model P*(s). The actual plant P(s) satisfies

A

P(s) = P*(s) + Hq(s) (Additive uncertainty)
or
P(s) = P*(s)[1 4 Hp(s)] (Multiplicative uncertainty)

|H,(jw) and |H,,(jw)| are unknown but bounded.

Design an LTI controller (feedforward + feedback) to match the
reference model M (s) over the frequency range of interest

At least preserve stability and reduce sensitivity
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Adaptive Control vs (Non-adaptive) Robust Control

Adaptive Control:

Designer distinguishes the parametric uncertainty in the pole/zero
locations and unstructured uncertainty.

P(s) = PH(S) + I:Iau(s)

or
P(S) = PH(S)[l + ﬁmu(s)]
Plant model ]59(5) — still unstructured uncertainty Hyy & Hyp
Identify the pole-zero locations on-line — during operation
Better match to M(s) but yielding nonlinear time-varying control

Added complexity is made worthwhile when non-adaptive control
has unsatisfactory performance
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Adaptive Control vs (Non-adaptive) Robust Control

Example

Unstable plant:
A m

P(s) =
(5) (s—1+¢€)(s+m)
with € > 0 small and m > 0 large.

Robust Control: Select nominal model P = ﬁ with
uncertainty

5 _—32+s—e(s+m)
Hn(s) = T+ m)

(unstable)

Adaptive Control: Parameterized nominal model Py(s) = —,

— s+0
(6 = —1 + € unknown), with uncertainty

Hiu(s) = ——2

tabl
s+m (stable)
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Robustness of Adaptive Systems

How will the adaptive algorithms behave with the true plant P(s)?

How can we maintain stability in the presence of uncertainties?
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A Young PhD's Story

Not to mention lively sessions at conferences

“I went to a fight, and an adaptive control session broke
out!”
— Bob Bitmead

1981 IEEE CDC, San Diego
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“Earlier versions of the above paper have been presented at
several conferences since 1980. These presentations have
certainly contributed towards making the sessions on adap-
tive control at the CDC conferences lively and fun. The
discussions have also inspired a lot of work on robustness of
adaptive systems which have significantly contributed to our
understanding of such systems.

| would like to thank you, Charles, for sticking your neck out
as a young Ph.D. and challenging ‘the adaptive establish-
ment.” ..." — Karl J. Astrom

Technical Notes and Correspondence
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The Rohrs Example

Consider a first-order plant

A k
P@(S):Hipa, kp:2,ap:1
P

and select the SPR reference model

o

m

H * _ * _ Q Am
Matching control parameters ¢ = = 1.5, d} = Pkp =

Output Error MRAC
u = éo’l" + CZpr
€o=Yp — Ym

Co = —7Y€oT

do = —Y€oYp
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The Rohrs Example (cont'd)

Real Plant

Actual plant and nominal model not exactly matched:
A 2 229
P(s) =

s+1  s2+30s+229
— ———

unmodeled dynamics

Poles of uncertainty: —15 & 25

Approximately equal to 1 at low frequency

Unmodeled dynamics is well-damped, stable (Traditional view: it
should be innocuous)
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The Rohrs Example: Simulation 1

A large constant reference input r(t) = 4.3 and noise free

Plant output ¥, Controller paremater estimates

8o 5°|: /t,,

T T T T T T 77T

Time(s) Time(s)

The output error initially converges to zero, but eventually diverges
to infinity.
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The Rohrs Example: Simulation 2

Reference r(t) = 0.3 + 1.85sin 16.1¢ has a small constant and large
high-frequency component, and noise free

Plant output ¥,

Time (s)

Controller paremater estimates

Time(s)

The output error diverges at first slowly, and then more rapidly to
infinity.
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The Rohrs Example: Simulation 3

Constant reference input 7 = 2 and a small output disturbance n =
0.5sin 16.1¢

Plant output ¥, Controller paremater estimates

L i
° 20 40 60 80 o 20 40 80 80

Time(s) Time(s)

The output error initially converges to zero. After staying in the
neighborhood of zero for an extend period of time, it diverges to
infinity.
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A Lesson from Rohrs Examples

The Rohrs examples stimulated much research about the robust-
ness of adaptive systems.

It shows the bounded-input-bounded-state stability properties for
the MRAC is not robust to uncertainties. Even an arbitrary small
disturbance can destabilize an adaptive system.

Instability mechanisms are related to the identifier.
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© Exponential Stability and Robustness
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Nominal and Perturbed Systems

We consider properties of the nominal (or unperturbed) system
&= f(t,z,0), x(0)= xo,
and relate to properties of the perturbed system

= f(t,z,u), x(0)=xo.

Roughly, exponential stability of the nominal system implies the
robustness of the perturbed system w.r.t. external perturbation w.
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Theorem (Small Signal 1/O Stability)

Consider the perturbed system & = f(t,x,u) and the unperturbed
system & = f(t, x,0) that has a zero equilibrium. Assume f € C*! and
Lipschitz w.r.t. o for x € By, u € B, and u € L.

If x = 0 is exponentially stable for the unperturbed system. Then, the
perturbed system

is small-signal L, stable, i.e. 3y1,¢1 > 0 s.t. for ||ulloo < 1
[#]loe < Mllullos < h.

Im > s.t. Vizo| < 2,0 < [Julles < 1 implies

lim dist(x(t), Bs) =0, & :=y1|ulc < h.

t—o0

Also consider the tool of input-to-state (ISS) stability.
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Sketch of Proof

Invoking the converse Lyapunov theorem: for exponential
stability 3 Lyapunov function V (¢, x) s.t.

arfz? <V(t,x) < aglz|?
— + ——f(t,2,0) < —as|z|?
xr

< aylz|.

Lie derivative along the perturbed system:

V< —aslaf? + e, 0) [ f(txu) — £t 2,0)]

ox
< —aglal® + asly|z]||u]
(0645 )?
< —gaglaf? + S

Intuitively, a large |z| will make V < 0.
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Exponential Stability and Robustness of Adaptive Systems

Let's consider the output error MRAC with relative degree 1. The
closed-loop dynamics is the nonlinear (bilinear) time-varying sys-

tem ~

el _[ An  Bmo'(t) €
We have learned that if ¢(¢) is PE, then the above system is
exponentially stable.

This means that if the reference signal is sufficiently exciting, we
may achieve robust performance.
We will consider the robustness of OE-MRAC w.r.t.

Output measurement noise
Unmodeled dynamics
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Robustness of OE-MRAC to Noise

Y, - output of the plant If’g(s); yp - measured output affected by
noise

yp(t) = yp(t) +n(t) = Polu] + n(t)

In OE-MRAC, the following terms are affected by n(t):
2nd part in the filter

e = Awy + bry, + ban

Update law

0= (Y, + 71— Ym)$ = —yChed — Y

Regression vector

r 0
w 0
o= y£ = Wi +qun,  Qn = n
w2 0
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Robustness of OE-MRAC to Noise

Now, the error dynamics becomes

Xx=ft,x)  Aput,n) + Pt n)x ()

N——
Nominal part
See (Sastry & Bodson, page 228) for the formulas of pi(+), P2(-), s.t.

n € Lo = ”leoo + ”PQHOO < knlln]co-

If the noise n € L, and g?) is PE, then 3v,,¢, > 0 and m > 1, s.t.
[n]los < ¢n and |z(0)] < £ implies

lim dist(x(t), Bs) =0, 6 = Ynl|n|oo,
t—o0

and |z(t)| < ml|zo| < h for all ¢ > 0.
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Robustness of OE-MRAC to Unmodeled Dynamics

Assume the existence of some additive uncertainty

Yp(t) = yp(t) + Halu(t)]
—_——
=A(t)

satisfying
[Halu]tlloo < vallttlloo + Ba, V2 0.

The perturbation A affects the plant input u (using u* to
present the nominal case):

w=u"+0"g. 040" gn = |lutloo < YullAtlloo + Bu

Small gain theorem: " S
- 1
YaYu < 1
bt b, .
I —Yavu Sa
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Theorem (Robustness to Unmodeled Dynamics)

Consider the OE direct MRAC with relative degree 1. If the additive
perturbation H,, satisfies the above assumptions.

Ifqg is PE, then, for xg, 4, 8 sufficiently small, the overall states

X € L.

We will learn the Small Gain theorem in the robust control part.
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@ Heuristic Analysis of The Rohrs Examples

26 / 39



Rohrs Example 1: High-Gain Identifier Instability

Example 1 uses a large reference input r(t) = 4.3, which is related to
the high-gain identifier instability.

A T
0 = —~ve, .
K [?/IJ

Although not directly using a large v > 0, multiplying r by 2
means twice of y,,,,y, and 7, or equivalently multiplying the gain
by 4.

Applying high-gain to LTI systems with relative degree > 2 yields
instability

Adaptation law:

Can be simply fixed using a normalized algorithm
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Rohrs Example 2: Exciting at High-Frequency

Example 2 uses a sufficiently exciting reference » = 0.3 + 1.85sin 16¢.
Without unmodeled dynamics, 3! values of cfj, d; to match r — y,,.
With unmodeled dynamics, there still exists unique values of ¢{, df, but

at the high-frequency wy, i.e.

458¢,
(s +1)(s? + 30s + 229) — 4584,

3
 s+3

Jwo Jwo

For this case, ¢}, d} depends on P(s), M(s) and also the reference 7.

By attempting to match the reference model at a high frequency,
the adaptive system leads to an unstable closed-loop system.
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Rohrs Example 3: Slow Drift Instability / Insufficiently Rich

Example 3 uses the reference not sufficiently rich (thus ¢ not PE).
We have shown that for the PE case, the adaptive system is robust
to noise.

Rohrs example with no unmodeled dynamics and 6 fixed

p(s) 29

A~

7(s)  s+1—2dy
If a constant reference r is used, then the transfer function should
be matched with the DC gain of M (s), i.e.
260

— =1.
1 —2dy

J infinite numbers of feasible ¢y and CZ() satisfying the above, thus

Jim [y, (8) = ym(£)] = 0.
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If the noise n(t) appears in y,, then ¢, dy would move along the

line .
260

1—-2dy

leaving e, = yp — ym at zero.

1

Part of adaptive law becomes
do = —vYp(¥s — Ym) — Vymn — Y0

slowly drifting do toward the negative direction

do (r(-2)

do (r(ti=2sin t)
1 Il

0 50 100 150 200

Time(s)
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© Robustness Enhancement in Adaptive Systems
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Robustness Enhancement

PE relies on the reference r(t) — not realistic for many scenarios.

Intuitive ldeas

The Usage of Prior Information

If the plant is fairly well modeled, except for a few un-
known /uncertain components, we may integrate them in adaptive
control — reducing complexity and excitation requirements.

Choice of Reference Model and Reference Plant

The reference model must be chosen to reflect a desirable response
of the closed-loop plant — should have a bandwidth no greater than
that of the identifier, and should not have large gains in those
frequency regions (reducing effects from unmodeled dynamics).

Dual control: reference r(t) affects both the control target and
excitation conditions.
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Intuitive Ideas (cont'd)

Time Variation of the Parameters
Plant parameters may slowly vary over time — estimator needs to
discount old input-output data.

Robust Identification Schemes

Parameter convergence is not guaranteed in general, but is unnec-
essary to output convergence. The identifier robustness is funda-
mental to the adaptive system robustness.

Careful selection of plant order: Large number leads to numerical
issue for identification, but should be sufficient to model the plant
dynamics.

Further filter the regression vectors: to reduce the effect of noise

Monitor the excitation in the identification loop.
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Robustness: Slow Adaptation
Rabbit-vs-Tortoise in adaptive systems:
Slow adaptation
Fast control loop

to generate two-times scale separation for stability analysis.

Slow

Adjustment
Controller

Parameters

Setpoint Fast Plant

—  Controller U y

Large adaptation gain v may freeze estimates (Ortega, ACC 2013)

lim lim [|6(0)| — |0(2)|] = 0.

Y—00 t—00
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Robustness: Deadzone

Stop updating the parameters when excitation is insufficient to
distinguish between regressor signals and noise — turn off setting a
threshold.

For example, we replace the gradient estimator by
e
-

6= 1+ y¢l¢l?
0 if le] <p

if le|]>p

This can be combined with different types of estimators, e.g. gradient,
RLS, normalized, with projection ...

Difficulty in selecting p > 0

35 /39



Robustness: Leakage Term (o-Modification)
Replace the parameter identifier by

0 = —ype — ofl

with a small ¢ >0

This is stable estimator to keep 6 from growing unbounded. How-
ever, with PE it cannot guarantee § — 6 as t — oo.

With a prior estimate of 6 as 6, it can be modified as
6 = —ype — (6 — bp).

Try to bias the direction of the drift towards 6 rather than 0.

Another interesting modification is
6 = —~pe — olelf.

Retain the feature without leakage.
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Robustness: Dynamic Regression Extension

Introducing dynamic extension, it may

act as low-pass filtering of process input/output, thus remov-
ing the effects of noise and high-frequency unmodeled dynamics
(Witenmark & Astrom, 1984)

Improve transient performance of parameter estimation — fast con-
vergence rate (Kreisselmeir, TAC 1977) !

Recently new method: Dynamic Regressor Extension and Mixing
(DREM) (Ortega et al., Ann. Rev. Control 2020) 2

1G. Kreisselmeier, Adaptive observers with exponential rate of convergence, IEEE
Trans Autom. Control, vol. 22, pp. 2-8, 1977.
2Ortegan, Nikiforov & Gerasimov, On modified parameter estimators for identi-
fication and adaptive control: A unified framework and some new schemes, Ann.
Rev. Control, vol. 50, pp. 278-293, 2020.
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Beyond

Multi-input-multi-output systems
G(s) e C™™
Nonlinear adaptive control
&= f(z)+ ¢z, t) "0 + g(x)u.

Self-tuning adaptive control
Transient performance and robustness under weak excitation

Machine learning and adaptation
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What have we learned?

Two methods to deal with uncertainty: Adaptive & (Non-adaptive)
Robust

The Rohrs examples: adaptive systems may not be robust to
different types of uncertainties

Heuristic analysis to the Rohrs examples

Challenge “well-established” theory for young researchers
Exponential stability implies robustness

Some methods to improve robustness of adaptive systems
Slow adaptation
Dynamic regressor extension
Leakage term (o-modification)
Deadzone
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NOMENCLATURE FOR LECTURE 3

Bowen.Yi@polymtl.ca

Monic

Hurwitz
Minimum phase
Relative degree
Proper

Strictly proper
P(s) =k
ai, B;
Yp, T
n(s),7(s)
Als)

ip(s)
P dp(s)

A, by

w;l)7w}(;2)
w1

e

NOMENCLATURE

A polynomial in s with the coefficient of the highest power is 1, e.g. s +2s+5

If its roots lie in C<q

A transfer function has numerator polynomial Hurwitz, e.g. %

Difference between the degrees of the denominator and numerator, e.g. Relative deg
relative degree > 0, e.g. 5}

relative degree > 0, e.g. 5

Plant transfer function (to estimate or control)

I T e

Coefficient parameters in the transfer function P(s) = P e

Plant output and input

Laplace transform of the plant’s input and output, i.e. i.e. P(s) = gf((:))
ﬁ is the introduced stable filter to deal with not proper terms
5\(5) ="+ A8+ N
a*(s) = ans" P4 4o
b*(s) = (An = Bn)s™ "+ + (M — B1)
a1 A=
Parameter vectors 0, := S 0y = .
Qp )\n - 571
0 1 0 0
0
0 0 1
Matrices in state-space realization A = by =
0
0 0 0 1
1
A1 A —An

State space variable for the filtered signals

States in the designed filter to estimate wl()l)7 wz(f)

Output error

s+2
s242

=1

M(s) = ky, 22

R . m(s)
Als); Ao(s)

€m

Reference model (transfer function)

1

)
A(S) = fim(8)Ao(s)

Polynomials to match the reference model to the given plant (to estimate)

is the introduced filter to deal with not proper terms, but deg 5\(5) =n-—1

a*(s) _ =« *T 1 n—2

YO B oS! [1 s ]

b*(s) _ 1% *T 1 n—2

ol R ol BN

Regression 6(1)" = [r(t) wMT(1) (1) w® (1)) € B>
Unknown parameters 6% := [ag a*’ b b*T] eR™

States for the realization of M (s)




ASSUMPTIONS ON THE PLANT

A1l Plant Assumption: SISO LTI system, whose transfer function I:’(s) = g;,((:)) is

7(s), §p(s) - Laplace transforms of input/output
fip(s), dp(s) - monic, coprime polynomials of degrees m and n
n is known, but m is unknown
Plant is strictly proper m <n — 1
A2 Reference Input Assumption: Input r(-) is piecewise continuous and bounded on R .

A3 Output Boundedness Assumption: The plant is located in a control loop such that r,y, € Leo.
ASSUMPTIONS ON THE REFERENCE MODEL

A4 The reference model is an SISO LTI system (selected by us)

N (8), dAm(s) are monic, coprime polynomials of degrees [, k < n.

M (s) is strictly proper

Its relative degree is no greater than the relative degree of the plant P(s), ie. 1<k—-I1<n—m
czm(s) is Hurwitz

A5 Positive Real Model: M (s) is strictly positive real
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