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Course Objectives

- Understand uncertainties in control systems

- Teach the theory and practice of the mainstream techniques, to
design control systems with uncertainties, in

• Adaptive control
• Online parameter estimation/learning
• Robust control

- Prerequisites:
• ELE6202 Multivariable Systems (or equivalents)
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Evaluation

- Project: 2 graded project reports (35% each)

- Oral Exam/Presentation: 30%

- Grading:
• For late submission: -10% if late for each day

• Submit individually;

• Not allowed to share the final reports or detailed methods

• Generative AI tools are allowed.
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Schedule

Adaptive Control (Sastry & Bodson, Ch. 1,2,3,5)

- Lecture 1: Introduction to Uncertainty & Adaptive Control (3h)

- Lecture 2: Real-Time Parameter Estimation (3h)

- Lecture 3: Online System Identification (2h)

- Lecture 4: Model Reference Adaptive Control (6h)

- Lecture 5: Robustness of Adaptive Systems (2h)

Robust Control (Scherer’s notes)

- Lecture 6: Robustness for SISO Systems

- Lecture 7: Stabilizing Controllers, Generalized Plant Concept

- Lecture 8: Robust Stability Analysis

- Lecture 9: Nominal and Robust Performance Analysis

- Lecture 10: Synthesis of H∞ Controllers

Advanced Topics (TBD, if time allows) & Presentation
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Systems and Signals

Linear Time-Invariant, Finite-Dimensional Systems

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du
(1)

with state u ∈ Rn, input u ∈ Rm, and output y ∈ Rq.

• x, y and u are signals: functions of time t ∈ [0,∞) that are
piece-wise continuous.

• Notations: x(·) denotes the signal as a whole, and x(t) is the
value of the signal at t.

• Solution:

y(t) = CeAtx0 +

∫ t

0
CeA(t−s)B(s)u(s)ds+Du(t), ∀t ≥ 0.
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• The system has the transfer matrix/function G(s) defined as

G(s) = C(sI −A)−1B +D, (2)

which is a matrix whose elements consist of real-rational and
proper functions in s.

• The fundamental relation between the state-space model and
frequency domain representation is studied in realization theory.

G(s) = CG(sI −AG)
−1BG +DG,

A feasible realization (AG, BG, CG, DG) and minimal realization
(controllable & observable).

• View the system as a device that processes signals from input
u(·) to output y(·).
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ẋ = Ax +Bu

y = Cx +Du

y(t) =
∫ t

0 CeA(t−s)Bu(s)ds +Du(t)

G(s)

ŷ(s) = G(s)û(s)

Realization

Laplace Transform

We use the symbol (NOT a partitioned matrix!)

G =

[
A B

C D

]
,

[
ẋ
y

]
=

[
A B

C D

] [
x
u

]
both for the mapping u → y as defined via the differential equation
with initial condition 0, and for the corresponding transfer matrix G.
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Operations for Realization
Suppose we are given

G =

[
A B

C D

]
, G1 =

[
A1 B1

C1 D1

]
, G2 =

[
A2 B2

C2 D2

]
.

• If G1 and G2 have the same dimension, their sum has a
realization

G1 +G2 =

 A1 0 B1

0 A2 B2

C1 C2 D1 +D2

 .

• If the number of columns of G1 is equal to the number of rows
G2, their product has a realization

G1G2 =

 A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

 .
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Operations for Realization (cont’d)

• If D is invertible, then G−1 exists, is proper and has a realization

G−1 =

[
A−BD−1C BD−1

−D−1C D−1

]
• Suppose that the square transfer function G has a proper
inverse. Then, G(∞) is invertible.

A square matrix has a proper inverse ⇐⇒ G(∞) is invertible.
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Controllability & Observability

Recall the PBH test:

• (A,B) is controllable ⇐⇒ the full rank of[
A− λI B

]
, ∀λ ∈ C

• (A,C) is observable ⇐⇒ the full rank of[
A− λI

C

]
, ∀λ ∈ C

• (A,B) is stabilizable ⇐⇒ the full rank of[
A− λI B

]
, ∀λ ∈ C≥0

• (A,C) is detectable ⇐⇒ the full rank of[
A− λI

C

]
, ∀λ ∈ C≥0
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Stability of LTI Systems (Frequency Domain)

A transfer function matrix H(s), whose elements are real rational
functions, are stable if

1) H(s) is proper (i.e. no pole at ∞)a; and

2) H(s) has only poles in C<0.

aEquivalently, the degree of the numerator ≤ the degree of the denominator.

Remarks
• Strictly proper: replace ≤ by <, equivalently,
lim|s|→∞H(s) = 0.

• Engineering meaning: pure differentiator H(s) = s (not proper)
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RH∞ Space

For the set of real rational proper and stable matrices of dimension
k ×m we use the symobol

RHk×m
∞ or RH∞,

latter when the dimensionality is clear.

Close under 3 operations

• A scalar multiple of one stable transfer matrix

• Sum of two stable transfer function matrices

• Product of two stable transfer function matrices
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Quizz

1 Which of the transfer functions are proper?

g1(s) =
s+ 1

s− 1
, g2(s) =

s

s+ 1
− s5

s4 − 1

2 What is the value of g1(s) at infinity?

3 What is the value of C(sI −A)−1B +D at infinity?

4 Which of the following rational matrices have a proper inverse:[
1
s

1
s2

s2 s

]
,

[
1
s

1
s2

1
s2

1
s

]
,

[
1 1

s
1
s 1

]
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Stability of LTI Systems (Time Domain)

A state space model (A,B,C,D) is said to be stable if

∀λi{A} ∈ C<0.

Relation (Frequency and Time Domains)

The state space model ẋ = Ax + Bu, y = Cx +Du and the corre-
sponding transfer function matrix G(s) = C(sI − A)−1B + D have
the following relations:

• If the state space model is stable, then G(s) is stable.

• Conversely, if G(s) is stable, (A,B) is stablizable and (A,C) is
detectable, then the matrix A is stable.
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Summary of System Descriptions in this Course
• A quadruple (A,B,C,D) of matrices defines the state-space
system [time domain]

ẋ = Ax+Bu, y = Cx+Du, x(0) = x0

which is considered as a map from u(·) to y(·).
• The quadruple (A,B,C,D) is also expressed as [time domain]

y =

[
A B

C D

]
u

• In frequency domain

ŷ(s) = G(s)u(s), G(s) := C(sI −A)−1B +D

• An operator Ĝ with any realization (A,B,C,D) s.t.

y(t) = Ĝ[u(t)].
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Useful Norms for Signals & Transfer Functions
• Bounded vector-valued signal u(·) (maximal amplitude/peak):

∥u∥∞ = sup
t≥0

∥u(t)∥ < ∞

• Integral signal u(·) (energy):1

∥x∥2 =

√∫ ∞

0
∥x(t)∥2dt

BIBO stability is related to ∥u∥2 < ∞ =⇒ ∥y∥2 < ∞. Intuitively,
we consider the energy-to-energy gain

γenergy = sup
0<∥u∥2<∞

∥y∥2
∥u∥2

=
can prove

σmax(G(jω)) := ∥G(jω)∥

• For a stable transfer function matrix

∥G∥∞ = sup
ω∈R

∥G(jω)∥.

1A signal with a large energy can have a small peak and vice versa.
20 / 53



Outline

1 Course Information

2 Elements of Linear Systems Theory

3 Uncertainty

4 Introduction to Adaptive Control

5 Review on Stability

21 / 53



Uncertainty

Differences always between the actual system and the model

• Unknown parameters and parameter variations

Center of gravity

u
α

Figure: Aircraft: Inertial change due to fuel consumption

Takeoff and landing weights for a Boeing 777-300ER from Montreal
(YUL) to Paris (CDG) [Generated by ChatGPT]

Parameter Value

Distance 5,550 km
Takeoff Weight (TOW) 300,000 kg
Landing Weight (LW) 240,000 kg
Fuel Burned 60,000–70,000 kg
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• Unmodeled nonlinearities in the linear model

x

y
f (x)

• Synthesized controller may be different from implemented
controller (Simplification for control implementation)
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• Detailed model → low-order simpler model for control synthesis

Figure: Motor driven Electric Vehicles (Input in model: Torque
via ignoring motor dynamics; Actual input: Voltage)

• Unmodeled dynamics: at high frequency both structure and
order of model are unknown.
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“A control engineer calls this mismatch uncertainty. Note
that this is an abuse of notation since neither the system nor
the model are uncertain; it is rather our knowledge about the
actual physical system that we could call uncertain.”

— Carsten Scherer
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Classes of Uncertainty

• Parametric (real) uncertainty.a The structure of the model (in-
cluding the order) is known, but some of of parameters θ =[
θ1, . . . , θℓ

]⊤
are unknown or uncertain.

ẋ = A(θ)x+B(θ)u

y = C(θ)x+D(θ)u

The vector θ is unknown and possibly time-varying.

• Dynamic (complex/frequency-dependent) uncertainty. The model
is in error due to missing dynamics, usually at high frequencies.

G(s)
u y

w∆

∆

z∆

aPetersen & Tempo, Automatica, 2014.

ẋ = Ax+B1w∆ +B2u

z∆ = C1x+D11w∆ +D12u

y = C2x+D21w∆

w∆ = ∆z∆
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Classes of Uncertainty (cont’d)

Dynamic uncertainty can be further classified into:

D1 Unstructured uncertainty. Roughly, a single constraint on

w∆ = ∆(x, t)z∆

D1.1 Norm bounded uncertainty:

∥∆(x(t), t))∥∞ ≤ 1

D1.2 Bounded real uncertainty: the transfer function matrix ∆(s)
satisfies the bounded real condition ∥∆(s)∥∞ ≤ 1, e.g.

• Addictive, multiplicative, and normalized coprime factor
uncertainty

D1.3 Positive real uncertainty: ∆(s) s.t.

∆(jω) + ∆(jω)∗ ⪰ 0, ∀ω

D1.4 Negative imaginary uncertainty:

j(∆(jω)−∆(jω)⋆) ⪰ 0, ∀ω ≥ 0
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Classes of Uncertainty (cont’d)

D2 Structured uncertainty. Roughly, multiple constraints on uncer-
tainty.

D2.1 Structured singular values uncertainty

∆ =

∆1

. . .

∆b


D2.2 Integral quadratic constraint (IQC) constraint in time-domain:∫ T

0

|w∆(s)|2dt ≤
∫ T

0

|z∆(t)|2dt+ d

D2.3 IQC constraint in frequency-domain:∫ ∞

−∞

[
W∆(jω)
Z∆(jω)

]∗
Π(jω)

[
W∆(jω)
Z∆(jω)

]
dω ≥ 0

More details for dynamic uncertainty in the second part of the course.
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Standard Regulation & Tracking Problems

For the given plant G (possibly with uncertainty), consider the
feedback interconnection

y = Gu, u = K(r − y)

with the controller K.

K G
+

−
r e u y

Standard goals in designing K

• Stabilize the interconnection

• Output y tracks r well, i.e. the norm ∥y − r∥ is small enough

• Control action u should not be too large

Constant r: regulation; Time-varying r(t): tracking.
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Our approaches

This course covers both parametric and dynamic (possibly structured
or not) uncertainty:

• Parametric uncertainty: Adaptive Control (“Adapt on the fly”)

• Dynamic uncertainty: Robust Control (“One design fits all”)
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Introduction

Tune to adjust for proper response2

Adapt to adjust to a specific use or situation

Autonomous independence, self-governing

Learn to acquire knowledge or skill by study, instruction or expe-
rience

Reason the intellectual process of seeking truth or knowledge by
inferring from either fact of logic

Intelligence the capacity to acquire and apply knowledge

In Automatic Control
• Gain scheduling - adjust controller parameter based on direct mea-

surement of system and environmental parameters
• Automatic tuning - tuning on demand
• Adaptation - continuous adjustment of controller parameters based

on regular measured signals

2The introduction part is mainly from Karl J. Åström’s lecture.
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Brief History of Adaptive Control
• Adaptive control: learn enough about a plant/process and its
environment for control – restricted domain, prior info

• Development similar to neural networks
Many ups and downs, lots of strong egos

• Early work driven adaptive flight control 1950–1970.
The brave era: Develop an idea, hack a system, simulate and fly!
Several adaptive schemes emerged no analysis
Disasters in flight tests – the X-15 crash Nov 15 1967
Gregory ed, Proc. Self Adaptive Flight Control Systems, 1959.

• Emergence of adaptive theory 1970–1980
Model reference adaptive control emerged from flight control
stability theory – a tracking problem
The self tuning regulator emerged from process control and
stochastic control theory – a regulation problem

• Microprocessor based products 1980

• Robust adaptive control 1990

• Machine Learning and Adaptation 2020
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Publications in Scopus

Figure: Control vs Adaptive Control

34 / 53



Pitch Control of Aircraft

Eigenvalues of dynamics matrix

FC1: -14, -3.07, 1.23

FC2: -14, -4.90, 1.78

FC3: -14, -1.87, 0.56

FC4: -14, -0.83±4.3i
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Block Diagram of Adaptive Systems

Controller

Adjustment

PlantSetpoint

Controller

Parameters

yu

36 / 53



Intuition
• To obtain a progressively better understanding of the plant (for

control), we need an identification technique.

• Intuitive to aggregate system identification and control

• If system identification is recursive – models are periodically up-
dated using previous estimates and new data – identification and
control may be performed concurrently.

Roughly speaking,

Adaptive Control =

(non-adaptive) Control Scheme + Recursive System Identification
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Some Landmarks
• Early flight control systems 1955

• Dynamic programming Bellman 1957

• Kalman’s self-optimizing regulator 1958

• Dual control Feldbaum 1960

• System identification 1965

• Self-optimizing control Draper Li 1966

• Learning control Tsypkin 1971

• Algorithms MRAS STR 1970

• Stability analysis (Lyapunov, passivity) 1980

• Industrial product 1980

• PID auto-tuning 1982

• Robustness 1985

• Autonomous control 1995

• Adaptation and machine learning – a renaissance 2015
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A Simple Example (MIT Rule)

Consider a first-order LTI system

y = G(s)[u] =
k

s+ a
[u]

with known a > 0 and unknown k > 0. Our target is a design a
feedback to make the closed-loop satisfy the model

ym = M(s)[u] =
1

s+ a
[u]

If k was known, we use the proportional control with gain θ⋆ =
1
k .

In MIT rule, we design the output error e(θ) = ym−y(θ) and optimize

the cost function J(θ) = 1
2e

2. It yields ∂y(θ)
∂θ = ∂( k

s+a)θ[u]/∂θ = kym

and the gradient of J is ∂J
∂θ = −keym. Hence, we select the gradient

dynamics
θ̇ = −γeym, γ > 0 (Adaptation gain)
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How can we get proven properties (stability,
convergence, and beyond)?
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Barbalat’s Lemma

If f(t) is a uniformly continuous function, s.t.

lim
t→∞

∫ t

0
f(s)ds < ∞,

then f(t) → 0 as t → ∞.

Corollary

If
g, ġ ∈ L∞, and g ∈ Lp

form some p ∈ [1,∞), then g(t) → 0 as t → ∞.

• Norm: ∥u∥p = (
∫∞
0 |u(s)|pds)

1
p and ∥u∥∞ = supt≥0 |u(t)|.

• Space Lp := {f(t)|∥f∥p < ∞}.
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Differential Equations

The system
ẋ = f(x, t), x(t0) = x0 ∈ Rn

is said to be

• autonomous or time-invariant, if f does not depend on t;

• time-varying, otherwise.

• linear, if f(x, t) = A(t)x;

• nonlinear, otherwise.

• has an equilibrium point x⋆, if f(x⋆, t) ≡ 0.

Lipschitz Condition

The function f is Lipschitz in x, if for some h > 0, ∃ℓ ≥ 0 s.t.

|f(x1, t)− f(x2, t)| ≤ ℓ|x1 − x2|, ∀x1, x2 ∈ Bh, t ≥ 0.

The Lipschitz constant ℓ =⇒ existence and uniqueness.
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Lemma (Bellman-Gronwall)

Let x(·), a(·), u(·) : R+ → R+, and T ≥ 0. If

x(t) ≤
∫ t

0
a(τ)x(τ)dτ + u(t), ∀t ∈ [0, T ], (3)

then

x(t) ≤
∫ t

0
a(τ)u(τ) exp

(∫ t

τ
a(σ)dσ

)
dτ + u(t), ∀t ∈ [0, T ]. (4)

When u(·) ∈ C1,

x(t) ≤ u(0) exp

(∫ t

0
a(σ)dσ

)
+

∫ t

0
u̇(τ) exp

(∫ t

τ
a(σ)dσ

)
dτ
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Stability

The equilibrium x = 0 for ẋ = f(x, t) is

• stable, if ∀t0 ≥ 0 and ϵ > 0, ∃δ(t0, ϵ) s.t.

|x0| < δ(t0, ϵ) =⇒ |x(t)| < ϵ, ∀t ≥ t0.

• uniformly stable, if x = 0 is stable and δ is independent of t0.

• asymptotically stable, if x = 0 is stable and attractive, i.e. ∀t0,
∃δ(t0) s.t.

|x0| < δ =⇒ lim
t→∞

|x(t)| = 0.

• uniformly asymptotically stable (UAS), if x = 0 is uniformly
stable and x(t) converges to 0 uniformly in t0. I.e., ∃δ > 0 and a
function γ : R+×Rn → R+, s.t. limτ→∞(τ, x0) = 0 for all x0 &

|x0| < δ =⇒ |x(t)| ≤ γ(t− t0, x0), ∀t0 ≥ 0.
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The equilibrium x = 0 for ẋ = f(x, t) is

• Globally asymptotically stable (GAS), if x = 0 is asymptotically
stable and limt→∞ |x(t)| = 0, for all x0 ∈ Rn

• Uniformly globally asymptotically stable (UGAS) ...

• Exponentially stable, if ∃m,α > 0 s.t.

|x(t)| ≤ me−α(t−t0)|x0|, ∀x0 ∈ Bh, t ≥ t0 ≥ 0

and the constant α is called as the rate of convergence.

• Globally exponentially stable (GES) ...
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Comparison Functions

• Class K function: A function α : R+ → R+ belongs to class
K, denoted as α ∈ K, if it is continuous, strictly increasing, and
α(0) = 0.

• Class K∞ function: It is said to belong to class K∞ if
limr→∞ α(r) = ∞.

• Class KL function: A continuous function β : [0, a) × [0,∞) is
said to belong to class KL if

(1) for each fixed s, β(r, s) ∈ K w.r.t. r;
(2) for each fixed r, β(r, s) is decreasing w.r.t. s and lims→∞(r, s) =

0.
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Positive Definite Function, Decrescent Function

A continuous function V (x, t) : Rn × R+ → R is called

• locally positive definite function (l.p.d.f)a if, for some h > 0 and
some α(·) ∈ K

V (0, t) = 0 and V (x, t) ≥ α(|x|), ∀x ∈ Bh, t ≥ 0.

• positive definite function (p.d.f), by replacing the above
“∀x ∈ Bh” by “∀x ∈ Rn”.

• decrescent, if ∃β(·) ∈ K s.t.

V (x, t) ≤ β(|x|), ∀x ∈ Bh, t ≥ 0.

aImagine like an “energy function”.
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Example

Consider the functions below.

• V (x, t) = |x|2: p.d.f., decrescent
• V (x, t) = x⊤Px with P ≻ 0: p.d.f., decrescent

• V (x, t) = (t+ 1)|x|2: p.d.f.
• V (x, t) = e−t|x|2: decrescent
• V (x, t) = sin2(|x|2): l.p.d.f., decrescent
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Lyapunov Stability Theorems

Consider the system ẋ = f(x, t) and a candidate Lyapunov function
V (x, t) ∈ C1 with

V̇ (x, t) =
∂V (x, t)

∂t
+

∂V (x, t)

∂x
f(x, t).

Then,

Conditions on V (x, t) Conditions on −V̇ (x, t) Conclusions

l.p.d.f. ≥ 0 locally stable

l.p.d.f., decrescent ≥ 0 locally US

l.p.d.f. l.p.d.f. AS

l.p.d.f., decrescent l.p.d.f. UAS

p.d.f., decrescent p.d.f. UGAS

a1|x|2 ≤ V (x, t) ≤ a2|x|2

|∂V/∂x| ≤ α4|x|
≤ −a3|x|2 GES
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Linear Time-Varying (LTV) Systems

Consider the LTV system

ẋ = A(t)x0, x(t0) = x0,

whose solution satisfies

x(t) = Φ(t, t0)x0.

The state transition matrix Φ(t, t0) ∈ Rn×n is the unique solution to

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I,

and satisfies the semigroup property

Φ(t, t0) = Φ(t, τ)Φ(τ, t0), ∀t ≥ τ ≥ t0,

thus Φ(t, t0)
−1 = Φ(t0, t).
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LTV Stability

For the LTV system ẋ = A(t)x,

• x = 0 is UAS ⇐⇒ x = 0 is exponentially stable.

• x = 0 is E.S. ⇐⇒ ∃ some m,α > 0 s.t.

∥Φ(t, t0)∥ = m exp(−α(t− t0))

for all t ≥ t0 ≥ 0.

Uniformly Complete Observability (UCO)

The system
ẋ = A(t)x, y = C(t)x

is called UCO if ∃ strictly positive constants β1, β2, δ s.t., ∀t ≥ 0

β2I ≥ W (t, t+ δ) ≥ β1I

with observability gramian W =
∫ t+δ
t Φ⊤(τ, t)C⊤(τ)C(τ)Φ(τ, t)dτ .
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What have we learned today?

• Review the representation of LTI systems (state-space & transfer
matrix)

• Sources and classification of uncertainty

• Introduction to adaptive control

• Review the elements of stability theory

Homework

1 Read (Sastry & Bodson, Chapter 1) - Preliminaries.

2 If you have time, also read (Sastry & Bodson, Chapter 0).
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Hiver 2025

1 / 46



Outline

1 Background of Parameter Estimation

2 Least Squares and Regression

3 Real-Time Parameter Estimation 1 – Gradient

4 Persistency of Excitation and Stability

5 Real-Time Parameter Estimation 2 – Least Squares
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Wide Applications

• Mathematics

• Statistics – Estimation theory

• Biology – Medical statistics

• Economics – Econometrics

• Control – System identification

• Signal processing

• Numerical analysis

• Physics

• · · ·
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System Identification: The Control View1

• How to get the models

Physics - white boxes
Experiments - black boxes
Combination - grey boxes

• How to do the experiments (data)

Experimental conditions - excitation
Fit and validation sets

• Model structure

Transfer functions
Impulse responses
State models

• Parameter estimation

Statistics
Loss function - likelihood
Validation

• Adaptive control

Estimate and control simultaneously
1This part is from K.J. Astrom’s slides.
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System Identification

Non-parametric methods

• Bode or Nyquist diagrams

• Step or impulse responses

Parametric methods

• Transfer functions
• Sampled models

Output error OE: A(q)[x] = B(q)[u], y = x+ e with q := d
dt

Transfer function: H(s) = N(s)
M(s)

Moving average
Autoregressive: A(q)[y] = e
Autoregressive with external input: A(q)[y] = B(q)[u] + e
Autoregressive moving average with external input (ARMAX):

A(q)y(k) = B(q)u(k) + C(q)e(k)

• Methods suitable for adaptive control
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Estimation Theory

• Special branch of statistics

• Unknowns parameters θ, observations y

• The likelihood function p(θ|Y ) is the probability density of the
observations y given the parameters θ

• Log likelihood function L(θ|Y ) = log p(θ|Y )

• Consistency - parameters converge in probability as sample size
goes to infinity

• Cramér-Rao lower bound2

• Efficiency - estimate achieves the Cramér-Rao bound when sample
size goes to infinity3

2It relates to estimation of deterministic but unknown parameter θ, i.e. the
precision of any unbiased estimator is ≤ the Fisher information I(θ).

3Harald Cramér, Mathematical Methods of Statistics, 1946.
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System Identification

Classic 1955 –

• Step or impulse responses

• Frequency response - transfer functions

• Spectrum analyzers - measure transfer function directly

Adaptive control 1959 –

• Estimate parameters in real time

• IFAC Symposium on Adaptive Control Teddington 1965

Identification 1965 –

• State space models

• Sampled models

• Strongly influenced by statistics
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Maximum Likelihood Estimation

Let θ be the unknown parameters and Y all observed measurements.
The likelihood function L(θ|Y ) is the probability density function of
the observations Y given the parameters

L(θ|Y ) = p(Y |θ).

It is useful to deal with the loglikelihood function
L(θ|Y ) = log p(Y |θ). The maximum likelihood estimate is

θ̂ = argmin
θ
L(θ|Y ).

The Fisher information matrix I has the i, j-th element

Ii,j = −E
∂2L(θ|Y )

∂θi∂θj
,

which is a lower bound of the covariance of the estimate.

In this course, we focus on deterministic approaches.
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Outline

1 Background of Parameter Estimation

2 Least Squares and Regression

3 Real-Time Parameter Estimation 1 – Gradient

4 Persistency of Excitation and Stability

5 Real-Time Parameter Estimation 2 – Least Squares
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Date Back to Gauss Original Work 1809

Priority dispute: in the history of statistics is that between Gauss and
Legendre, over the discovery of the method of least squares.
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Regressor Model

y(t) = H(ϕ(t), θ) + e(t)

y(t) ∈ Rm - observed data

θ ∈ Rn - unknown constant parameters

ϕ (proper dim) - known function

e ∈ Rn - residuals (small)

Linear Regressor

y(t) = ϕ⊤(t)θ + e(t)

= ϕ1(t)θ1 + . . .+ ϕn(t)θn + e(t).

with ϕ(t) ∈ Rn×m.a

aIt can be viewed as the LTV system

θ̇ = 0, y(t) = ϕ⊤(t)θ.
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Offline Solution

Consider the linear regressor

y(t) = ϕ⊤(t)θ,

and we defined the collection vectors

Y (t) = col(y(1), . . . , y(t)), Ψ(t) = col(ϕ⊤(1), . . . , ϕ⊤(t))

E(t) = col(e(1), . . . , e(t)).

Using the historical information, we have Y (t) = Ψ(t)θ + E(t).
Our target is to minimize, with respect to θ, the cost function

V (θ, t) =
1

2

t∑
i=1

e(i)2 =
1

2

t∑
i=1

[y(i)− ϕ⊤(i)θ]2 =
1

2
∥E∥2,

where
E = Y − Ŷ = Y −Ψθ.
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Theorem (Least-Squares Theorem)

The parameter θ̂⋆ that minimizes the cost function are given by the
normal equations

Ψ⊤Ψθ̂⋆ = Ψ⊤Y. (1)

If Φ⊤Φ is nonsingular, the miniumum is unique and given by

θ̂⋆ = (Ψ⊤Ψ)−1Ψ⊤Y.

This is a well-known result in any textbooks on linear algebra or
matrix theory.
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Proof.

The cost function can be written as

2V (θ, t) = E⊤E = (Y −Ψθ)⊤(Y −Ψθ)

= Y ⊤Y − Y ⊤Ψθ − θ⊤Ψ⊤Y + θ⊤Ψ⊤Ψθ.

Complete the square

2V (θ, t) = Y ⊤Y − Y ⊤Ψθ − θ⊤Ψ⊤Y + θ⊤Ψ⊤Ψθ

+ Y ⊤Ψ(Ψ⊤Ψ)−1Ψ⊤Y − Y ⊤Ψ(Ψ⊤Ψ)−1Ψ⊤Y

= Y ⊤[I −Ψ(Ψ⊤Ψ)−1Ψ⊤]Y

+ (θ − (Ψ⊤Ψ)−1Ψ⊤Y )⊤Ψ⊤Ψ(θ − (Ψ⊤Ψ)−1Ψ⊤Y ).

Therefore, the minimum

min 2V (θ, t) = Y ⊤(I −Ψ(Ψ⊤Ψ)−1Ψ⊤)Y

is assumed for θ̂⋆ = (Ψ⊤Ψ)−1Ψ⊤Y. ■
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Example: Least Squares Estimation

y(t) = b0 + b1u(t) + b2u
2(t) + e(t)

σe = 0.1

φ⊤(t) =
[
1 u(t) u2(t)

]
θ⊤ =

[
b0 b1 b2

]
• Estimated models b0 = 1, b1 = 0.5, b2 = 0.1, σ = 0.1
• Model 1: y(t) = b0
• Model 2: y(t) = b0 + b1u
• Model 3: y(t) = b0 + b1u+ b2u

2

• Model 4: y(t) = b0 + b1u+ b2u
2 + b3u

3

Model b̂0 b̂1 b̂2 b̂3 2V σ−2

1 3.85 - - - 3446
2 0.57 1.09 - - 101
3 1.11 0.45 0.11 - - 3.1
4 1.13 0.37 0.14 -0.003 2.7
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Cost function smaller with more parameters, when to stop?
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Outline

1 Background of Parameter Estimation

2 Least Squares and Regression

3 Real-Time Parameter Estimation 1 – Gradient

4 Persistency of Excitation and Stability

5 Real-Time Parameter Estimation 2 – Least Squares
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Recursive Estimators

Consider the linear regression model:

y(t) = ϕ⊤(t)θ. (2)

• Idea: find a formula that expresses

- in discrete time, θ̂(t) in terms of θ̂(t− 1); or

- in continuous time, θ̂(t) is a solution of the dynamical system

˙̂
θ = β(θ̂, y(t), ϕ(t)), θ̂(t0) = θ̂0.

• Purposes:

- Recursive computation of estimate as data is obtained is very
useful for adaptive control

- Track (slowly-varying) parameter variations

In this course, we study 1) Gradient Algorithms and 2) Recursive
Least Squares Algorithms
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Gradient Algorithms

Consider the linear regressor

y(t) = ϕ⊤(t)θ (3)

with constant, unknown θ ∈ Rn, and available ϕ ∈ Rn and y ∈ R.

Standard Gradient Algorithm [Important!]

The update law

˙̂
θ = −γϕ(t)(ϕ⊤(t)θ̂ − y(t)), θ̂(t0) = θ̂0. (4)

γ > 0 - Adaptation gain (constant)

θ̂0 - Initial condition is arbitrary.

Adaptation gain γ > 0 allows us to vary the rate of adaptation.
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y(t) = ϕ⊤(t)θ

Define

Estimation error θ̃(t) := θ̂(t)− θ

Output error e := ϕ⊤(t)θ̂ − y(t).

We want to minimize the cost function

J(θ̂, t) = |e(θ, t)|2,

whose gradient is

∇θ̂J(θ̂, t) = 2ϕe = 2ϕ(ϕ⊤θ̂ − y) =⇒ ˙̂
θ = −γ

2
∇θ̂J

It can be viewed as steepest descent.
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If the regression ϕ /∈ L∞, we have

y(t) = ϕ⊤(t)θ =⇒ y√
1 + α|ϕ|2︸ ︷︷ ︸

ỹ(t)

=
ϕ⊤(t)√
1 + α|ϕ|2︸ ︷︷ ︸
ϕ̃⊤(t)

θ

Alternative 1: Normalized Gradient Algorithm

˙̂
θ = − γ

1 + αϕ⊤ϕ
ϕ(ϕ⊤θ̂ − y)

with constant parameters γ > 0 (adaptation gain) and α > 0.

1 It is equivalent to the standard, with ϕ replaced by ϕ√
1+α|ϕ|2

.

2 For the normalized estimator, RHS is globally Lipschitz in ϕ,
even when ϕ is unbounded.
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Alternative 2: Normalized Gradient Algorithm with Projection

Sometime the parameter θ is known a priori to lie in a set Θ ⊂ Rn

(closed, convex and delimited by a smooth boundary). Modify as

˙̂
θ =


− γ

1 + α|ϕ|2
ϕ(ϕ⊤θ̂ − y) if θ ∈ int(Θ)

Proj

[
− γ

1 + α|ϕ|2
ϕ(ϕ⊤θ̂ − y)

]
if θ ∈ ∂Θ and eϕ⊤θperp < 0

with

intΘ, ∂Θ - Interior and boundary of Θ

Proj[z] - projecting z onto the hyperplant tangent to ∂Θ at θ

θprep - unit vector perpendicular to hyperplane, pointing outward

4

4Summary of projectors design: E. Lavretsky, T.E. Gibson, and A.M.
Annaswamy, ArXiv 2012. (https://arxiv.org/pdf/1112.4232)
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Example (Simple Projection)

A priori bounds p−i and p+i are known, i.e.

θ⋆i ∈ [p−i , p
+
i ].

The update law is then modified to

θ̇i = 0 if θi = p−i and θ̇i < 0

or θi = p+i and θ̇i > 0.
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Properties of Gradient Algorithms

• Linear regressor: y(t) = ϕ⊤(t)θ

• Gradient estimator:
˙̂
θ = −γϕ(ϕθ̂ − y)

• Linear error equation: e := ϕ⊤θ̃ (= ϕ⊤θ̂ − y)

Theorem (Properties of Standard Gradient Estimator)

Consider the above gradient estimator with γ > 0 and the regression
function ϕ : R+ → Rn piecewise continuous. Then,

1 Output error e ∈ L2

2 Estimate error θ̃ ∈ L∞ (bounded estimate)

3 Monotonicity: |θ̃(ta)| ≥ |θ̃(tb)|, for all tb ≥ ta ≥ 0.
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Proof.

The dynamics of the estimate error θ̃ := θ̂ − θ is the LTV system

˙̃
θ = −γϕ(t)ϕ⊤(t)θ̃. (5)

Select the Lyapunov function V (θ̃) = 1
2 θ̃

⊤θ̃. Its derivative is

V̇ = −γ(ϕ⊤θ̃)2 = −γe2 ≤ 0.

It means
∫ tb
ta

V̇ (s)ds ≤ 0, thus V (θ̃(tb))− V (θ̃(tb)) ≤ 0, equivalently
the third item. This also leads of the boundedness in 2).

Since V is positive and monotonically decreasing, the limit V (∞) is
well define and

V (∞)− V (0) =

∫ ∞

0
V̇ (s) = −γ

∫ ∞

0
e(s)2ds < ∞.

Therefore, e ∈ L2 verifying 1). ■
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Theorem (Properties of Normalized Gradient Estimators)

Consider the linear regressor y(t) = ϕ⊤(t)θ with ϕ ∈ PC[0,∞) and
the normalized gradient estimator

˙̂
θ = − γ

1 + α|ϕ|2
ϕ(ϕ⊤θ̂ − y)

Then,

1
e√

1+α|ϕ|2
∈ L2 ∩ L∞

2 θ̃ ∈ L∞ and d
dt θ̃ ∈ L2 ∩ L∞

3 β := ϕ⊤θ̃
1+∥ϕ(·)∥∞ ∈ L2 ∩ L∞.

The error dynamics is

˙̃
θ = − γ

1 + α|ϕ|2
ϕϕ⊤θ̃, γ > 0.

Its proof can be found in (Sastry & Bodson, page 64).
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Gradient Estimator with Decaying Perturbation

Theorem (Effect of Exponentially Decaying Term)

Consider the perturbed linear regressor

y(t) = ϕ⊤(t)θ + ϵ(t)

with ϵ(t) is an exponentially decaying term. Then, the theorems on
standard and normalized gradient estimators still hold true.

Modify the Lyapunov function to

V (θ̃) =
1

2
θ̃⊤θ̃ +

γ

4

∫ ∞

t
ϵ2(τ)dτ.

Then,

V̇ = −γ(ϕ⊤θ̃)2 − γ(ϕ⊤θ̃)ϵ− γ

4
ϵ2 = −γ(ϕ⊤θ̃ − 1

2
ϵ)2 ≤ 0.

It follows a similar proof procedure.
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Outline

1 Background of Parameter Estimation

2 Least Squares and Regression

3 Real-Time Parameter Estimation 1 – Gradient

4 Persistency of Excitation and Stability

5 Real-Time Parameter Estimation 2 – Least Squares
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Persistency of Excitation (PE)

• We derived the output error e ∈ L2 and θ̃ ∈ L∞.

• How can we achieve θ̃(t) → 0 as t → ∞?

Related to the LTV error dynamics

˙̃
θ = −γϕ(t)ϕ⊤(t)θ̃, γ > 0

in the form of
˙̃
θ = −A(t)θ̃

with A(t) ∈ Rn×n positive semidefinite (p.s.d.) for all t.

A(t) uniformly p.d. with λmin(A+A⊤) ≥ 2α =⇒ Exp. stability
Unfortunately, such is never the case, since

rank (ϕ(t)ϕ⊤(t)) = 1 < n ∀t.
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Definition (Persistency of Excitation)

A vector-valued function ϕ : R+ → Rn is persistently exciting (PE) if
∃α1, α2, T > 0 s.t.

α2I ⪰
∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ ⪰ α1I, ∀t ≥ 0.

Interpretation

• Though ϕϕ⊤ is singular for all τ , the PE requires that ϕ rotates
sufficiently in space that the integral of ϕ(τ)ϕ⊤(τ) is uniformly
p.d. over any interval of length T > 0.

• Re-expressing in scalar form

α2 ≥
∫ t+T

t
|ϕ⊤(τ)x|2dτ, ∀t ≥ 0, |x| = 1.

Condition on energy of ϕ in all directions.
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PE vs Uniform Complete Observability

The PE condition: ∃α1, α2, T > 0 s.t.

α2I ⪰
∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ ⪰ α1I, ∀t ≥ 0.

⇕

The uniform complete observability (UCO) of the LTV system

θ̇ = 0

y = ϕ⊤(t)θ

i.e. A(t) = 0 and C(t) = ϕ⊤(t)
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Theorem (PE and Exponential Stability)

Consider ϕ : R+ → Rn that is piecewise continuous. If ϕ is PE, then
the zero equilibrium of

˙̃
θ = −γϕ(t)ϕ⊤(t)θ̃, γ > 0 (6)

is globally exponentially stable.

The converse claim is also true. It is necessary and sufficient.
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Before proving the theorem, we need the following lemma.

Lemma

Assume ∀δ > 0, ∃kδ ≥ 0 s.t. ∀t ≥ 0∫ t+T

t
∥K(τ)∥2dτ ≤ kδ.

Then, the system (A,C) is UCO ⇐⇒ (A+KC,C) is UCO.

Moreover, if the observability gramian of (A,C) satisfies

β2I ⪰ W (t, t+ δ) ⪰ β1I,

then the observability gramian of (A+KC,C) satisfies these inequal-
ities with identical δ and

β′
1 =

β1

1 +
√
kδβ2

β′
2 = β2 exp(kδβ2).
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Proof of Theorem (PE & Exp Stability)

Consider the Lyapunov function V = |θ̃|2 s.t. V̇ = −2γ|ϕ⊤θ̃|2 ≤ 0,∫ t+T

t
V̇ dτ = −2γ

∫ t+T

t
[ϕ⊤(τ)θ̃(τ)]2dτ.

By the PE assumption, the system (0, ϕ⊤(t)) is UCO. Under
output injection with K(t) = −γϕ(t), the system becomes
(−γϕ(t)ϕ⊤(t), ϕ⊤(t)) with

kδ =

∫ t+T

t
|γϕ(τ)|2dτ = γ2Tr

[∫ t+T

t
ϕ(τ)ϕ(τ)⊤dτ

]
≤ nγ2α2.

By the lemma, the system (A+KC,C) is UCO. Therefore, ∀t

Gramian of (A+KC,C) ≤ − 2β1γ

1 +
√
nγα2

|ϕ(t)|2
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Proof (cont’d)

Bya ∫ t+T

t
V̇ dτ ≤ − 2β1γ

1 +
√
nγα2

|ϕ(t)|2

and the following (integral-type) Lyapunov stability theorem (see next
slide), we complete the proof. ■

aFor the system (Ã, C̃), the observability gramian is defined as

Wo(t0, t0 + T ) =

∫ t0+T

t0

Φ⊤(s, t0)C
⊤(s)C(s)Φ(s, t0)ds.

The UCO condition
k1I ⪰ Wo(t0, t0 + T ) ⪰ k2I

is equivalent to

k1|x(t0)|2 ≥
∫ t0+T

t0

|C(s)x(s)|2ds ≥ k2|x(t0)|2.
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For the system ẋ = f(x, t). If ∃ a function V (x, t) and constants
k1, k2, k3, δ > 0, s.t. ∀x ∈ Bh, t ≥ 0

k1|x|2 ≤ V (x, t) ≤ k2|x|2

∂V

∂t
(x, t) +

∂V

∂x
f(x, t) ≤ 0∫ t+δ

t

d

dτ
V (x(τ), τ)dτ ≤ −k3|x(t)|2.

Then, x(t) converges exponentially to 0.

Estimating exponential convergence rate

α =
1

2T
ln

 1

1− 2γα1

(1+
√
2nγα2)2


• Increasing the gain γ > 0 cannot make it arbitrarily fast.

• When γ is sufficiently small, the rate α ∝ γ approximately
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Least Squares Algorithms

Regressor y(t) = ϕ⊤(t)θ

Estimation error θ̃(t) := θ̂(t)− θ

Output error e := ϕ⊤(t)θ̂ − y(t).

Gradient estimator optimizes J(θ̂, t) = |e(θ, t)|2

Intuition: Least Squares Algorithms

Find the parameter θ to minimize the integral-squared-error (ISE)

ISE =

∫ t

0
e2(s)ds =

∫ t

0
(ϕ⊤(s)θ̂ − y(s))2ds

The estimate of θ may be obtained from

∂

∂θ̂
ISE(θ̂, t) = 2

∫ t

0
ϕ(s)

(
ϕ⊤(s)θ̂ − y(s)

)
ds = 0
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The least squares estimate is given by

θ̂LS(t) =

(∫ t

0
ϕ(s)ϕ⊤(s)

)−1(∫ t

0
ϕ(s)y(s)ds

)
if the inverse exists, and θ̂ = θ.

To get recursive formulations, let us define

P (t) =

(∫ t

0
ϕ(s)ϕ⊤(s)

)−1

,

so that5
d

dt
[P−1(t)] = ϕ(t)ϕ⊤(t).

5Calculation d
dt
[P−1(t)]: Since

0 =
d

dt
I =

d

dt

[
P (t)P−1(t)

]
=

d

dt
[P (t)]P−1(t) + P (t)

d

dt
[P−1(t)].
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Then,

Ṗ = −P
d

dt
[P−1]P = −Pϕ(t)ϕ⊤(t)P , P (t0) =

(∫ t0

0
ϕ(s)ϕ⊤(s)

)−1

.

The least-square estimate can be represented as

θLS = P (t)

∫ t

0
ϕ(s)y(s)ds,

whose dynamics is6

θ̇LS = −Pϕ(t)ϕ⊤(t)θLS + Pϕ(t)y(t)

= −P (t)ϕ(t)
(
ϕ⊤(t)θLS − y

)
= −Pϕ(t)e(t)

6In practice, the recursive least-squares algorithms starts with arbitrary initial
condition at t0 = 0.
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Recursive Least Squares Estimator

˙̂
θ = −γPϕ(t)

(
ϕ⊤(t)θ̂ − y

)
, θ̂(0) = θ̂0

Ṗ = Q− γPϕ(t)ϕ⊤(t)P, P (0) = P0 ≻ 0.

Adaptation gain γ > 0

Design parameter Q ⪰ 0 (usually Q = 0)

Viewing the regression model as the LTV system

θ̇ = 0

y = ϕ⊤θ.

RLS estimator is nothing but just the well-knownKalman-Bucy filter.
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In the Standard RSL estimator with Q = 0,

Ṗ = −γPϕϕ⊤P =⇒ d

dt
(P−1) = γϕϕ⊤.

Covariance Wind-up: This means that P−1 may become unbounded as
t → ∞ and thus P−1 may become arbitrarily small in some directions
– adaptation becoming very slowly.

Least-Squares with Forgetting Factor

˙̂
θ = −γPϕ

(
ϕ⊤θ̂ − y

)
, θ̂(0) = θ̂0

Ṗ = γP (λP − ϕϕ⊤P ), P (0) = P0 ≻ 0

or
d

dt
(P−1) = γ

(
−λP−1 + ϕϕ⊤

)
• BIBO stability from ϕϕ⊤ to P−1

• Another possible remedy: covariance resetting. P (t+r ) = k0I
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Normalized Least-Squares Estimator

θ̇ = −γ
Pϕ(ϕ⊤θ̂ − y)

1 + αϕ⊤Pϕ

Ṗ = −γ
Pϕϕ⊤P

1 + αϕ⊤Pϕ
, P (0) ≻ 0

with fixed parameters γ, α > 0.

• The modification with forgetting factor can be combined to avoid
covariance wind-up.

• RLS is complicated but has faster convergence rates compared to
the gradient estimator.
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Theorem (Normalized LS Estimator with Covariance Resetting)

Consider the regressor y(t) = ϕ⊤(t)θ with the normalized LS estimator
with covariance resetting

θ̇ = −γ
Pϕ(ϕ⊤θ̂ − y)

1 + αϕ⊤Pϕ

Ṗ = −γ
Pϕϕ⊤P

1 + αϕ⊤Pϕ
, P (0) = P (t+r ) = k0I

and γ, α > 0, tr := {t|λmin(P (t)) ≤ k1 < k0}, and ϕ ∈ PC[0,∞).

• e√
1+αϕ⊤Pϕ

∈ L2 ∩ L∞

• ϕ ∈ L∞, ϕ̇ ∈ L2 ∩ L∞

• β = ϕ⊤θ̃
1+∥ϕ(·)∥∞ ∈ L2 ∩ L∞.

• If ϕ is PE, the estimate θ̂ satisfies limt→∞ |θ̂(t)− θ| = 0 (exp.).

The proof is given in (Sastry & Bodson, pages 67 and 75).
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System Identification

To identify an LTI system

ẋ = Ax+Bu

y = Cx+Du,

we need to represent the unknown “parameter” θ = (A,B,C,D) in a
regression model.

We will study it next week.
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What have we learned today?

• Motivation and formulation of real-time parameter estimation

• Regressor models and least squares problem
• Recursive estimator

1) Gradient algorithm (standard, normalized, projection),
J(θ) = |y − ϕ⊤(t)θ|2

2) Recursive LS (standard, normalized, with forgetting factor,

covariance resetting), , J(θ) =
∫ t

0
|y − ϕ⊤(s)θ|2ds

• Pesistency of excitation (PE)

• Stability properties of online estimators

Homework
• Review the slides; Read (Sastry & Bodson, Ch. 2.3-2.5 and pp.

48-50)

• Find a regression model and numerically test two estimators in
Matlab, Julia or Python (preparing for your first report).
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Outline

1 Online Identification and Assumptions
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Online System Identification

We are concerned with the following questions with SISO systems:

• How to parameterize a system to get a linear regressor?

• How to generate the data to satisfy the PE condition?

• How to online estimate these parameters? [Solved in the last
lecture]

Identifier
Measurements

u, y
Model
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Problem 1: Plant Parameterization
Given an unknown SISO plant

ẋ = Ax+Bu

y = Cx+Du,

or represented in the frequency domain

ŷ(s)

û(s)
= H(s) =

n(s)

m(s)
,

we have the measurements (u, y) and unknown parameters θ included
in (A,B,C,D) (or equivalently the coefficients in n(s) and m(s)).

Can we get a linear regressor

Y (t) = ϕ⊤(t)θ

to estimate these parameters θ? (y has been used for plant output.)
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Technical Challenges

1. No access to the internal state x

2. Overparameterization: n-dimensional SISO systems

- State space model has (n+ 1)2 parameters (n2 in A, n in B and
C, and 1 in D)

- Transfer function has 2n parameters

H(s) =
θ1s

n + . . .+ θn
θn+1sn + . . .+ θ2n

3. No access to derivative ẋ. For the special case that we have x,

ẋ =
[
A B

]︸ ︷︷ ︸
:=θ⊤

[
x
u

]

4. . . .
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Problem 2: Data Generation (Identification Input Design)

In order to be able to identify θ online, we require ϕ persistently excited.

Can we operate the plant (A,B,C,D), or equivalently H(s), to gen-
erate {u, y} such that ϕ is PE?

Technical Challenges

1. Reformulate the PE condition of ϕ into some requirements on
u(t);

2. Operate the plant safely; Input should not be too large. [Not the
focus of our course]

3. · · ·
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Some Definitions of Transfer Function
• Monic: a polynomial in s is monic if the coefficient of the highest

power in s is 1

• Hurwitz: if its roots lie in C<

• Stable: transfer function has its denominator polynomial Hurwitz

• Minimum phase: if the numerator polynomial is Hurwitz

• Relative degree: difference between the degrees of the denomina-
tor and numerator polynomials

• Proper: relative degree ≥ 0

• Strictly proper: relative degree > 0
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Assumptions

A1 Plant Assumptions

SISO LTI system, whose transfer function P̂ (s) =
ŷp(s)
r̂(s) is

P̂ (s) = kp
n̂p(s)

d̂p(s)

r̂(s), ŷp(s) - Laplace transforms of input/output

n̂p(s), d̂p(s) - monic, coprime polynomials of degrees m and n
n is known, but m is unknown
Plant is strictly proper m ≤ n− 1

We do not assume the stability of the plant.
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A2 Reference Input Assumptions
Input r(·) is piecewise continuous and bounded on R+.

A3 Bounded Output Assumption
The plant is located in a control loop such that r, yp ∈ L∞.a

aThis can be further relaxed as the regular signal assumption. (Sastry &
Bodson, page 70).

Objective: Estimate kp and the coefficients of the polynomials

n̂p(s), d̂p(s) from measurements of input r(t) and output yp(t) only.
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Generating Linear Regression Models

Parameterization of Unknown Plants

Transfer function P̂ (s) can be explicitly written as

ŷp(s)

r̂(s)
= P̂ (s) =

αns
n−1 + · · ·+ α1

sn + βnsn−1 + · · ·+ β1
(1)

with 2n unknown coefficients.

Express as the linear regressor

snŷp(s) =
(
αns

n−1 + · · ·+ α1

)
r̂(s)−

(
βns

n−1 + · · ·+ β1
)
ŷp(s)

Not practical: Require explicit differentiations to be implemented!
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Introduce a monic n-th order Hurwitz (but arbitrary) polynomial

λ̂(s) = sn + λns
n−1 + · · ·+ λ1.

Then, from

P̂ (s) =
ŷp(s)

r̂(s)
:= kp

n̂p(s)

d̂p(s)

=⇒ kpn̂p(s)r̂(s)− d̂p(s)ŷp(s) = 0.

this leads to a linear regressor, but n̂p(s) and d̂p(s) are not proper!
To address this implementation issue, we rewrite it as

λ̂(s)ŷp(s) = kpn̂p(s)r̂(s) + (λ̂(s)− d̂p(s))ŷp(s),

or equivalently

ŷp(s) =
αns

n−1 + · · ·+ α1

λ̂(s)
r̂(s)+

(λn − βn)s
n−1 + · · ·+ (λ1 − β1)

λ̂(s)
ŷp(s).
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ŷp(s) =
αns

n−1 + · · ·+ α1

λ̂(s)
r̂(s)+

(λn − βn)s
n−1 + · · ·+ (λ1 − β1)

λ̂(s)
ŷp(s)

Define the polynomials

â∗(s) = αns
n−1 + · · ·+ α1

b̂∗(s) = (λn − βn)s
n−1 + · · ·+ (λ1 − β1).

and (unknown) parameters

θa :=

α1
...
αn

 , θb :=

λ1 − β1
...

λn − βn


New representation

The plant can be equivalently represented as

ŷp(s) =
â∗(s)

λ̂(s)
r̂(s) +

b̂∗(s)

λ̂(s)
ŷp(s) (2)
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Linear Regressor Form

ŷp(s) =
â∗(s)

λ̂(s)
r̂(s) +

b̂∗(s)

λ̂(s)
ŷp(s)

= θ⊤a


1
s
...

sn−1

 1

λ̂(s)
r̂(s)

︸ ︷︷ ︸
ŵ

(1)
p (s)

+θ⊤b


1
s
...

sn−1

 1

λ̂(s)
ŷp(s)

︸ ︷︷ ︸
ŵ

(2)
p (s)

Rewrite in time domain leading to a linear regressor

yp(t) = wp(t)
⊤θ, θ :=

[
θa
θb

]
, wp :=

[
w

(1)
p

w
(2)
p

]
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How can we obtain wp(t)?

State space realization can be found in controllable canonical form

ẇ(1)
p = Λw(1)

p + bλr

ẇ(2)
p = Λw(2)

p + bλyp

witha

Λ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−λ1 −λ2 · · · · · · −λn

 bλ =


0
...
0
1


with initial conditions w

(1)
p (0), w

(2)
p (0).

aRecall

(sI − Λ)−1bλ =
1

λ̂(s)

[
1 s . . . sn−1

]⊤
.
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ŷp(s) =
â∗(s)

λ̂(s)
r̂(s) +

b̂∗(s)

λ̂(s)
ŷp(s)

θ⊤a

θ⊤b

r w
(1)
p

yp

w
(2)
p

+

(sI − A)−1bλ

(sI − A)−1bλ
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Implementation

We have the state-space realization of wp:

ẇ(1)
p = Λw(1)

p + bλr

ẇ(2)
p = Λw(2)

p + bλyp.

However, we do not have the initial condition wp(0) ∈ R2n.

Filter Design

ẇ(1) = Λw(1) + bλr

ẇ(2) = Λw(2) + bλyp.

with w(0) ∈ R2n, which only uses the available signals r, yp, without
knowledge of the plant parameters.

Hurwitz Λ =⇒ lim
t→∞

|w(t)− wp(t)| = 0 (exp.)
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Implementation (cont’d)

With the available signals r, yp, apply the filter

ẇ(1) = Λw(1) + bλr

ẇ(2) = Λw(2) + bλyp.

with w(0) ∈ R2n leading to the (perturbed) linear regressor

y(t) = w(t)⊤θ + ϵ(t)

with the error ϵ(t) exponentially decaying to zero.

Use the gradient estimator

˙̂
θ = −γw(w⊤θ̂ − y), γ > 0

or the RLS estimator to estimate θ!
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θa θb

r yp

w2

+

P̂ (s)

w1

w
e

ŷ

(sI − A)−1bλ(sI − A)−1bλ −

P̂ (s)

Figure: Identifier Structure 1: Error Equation Identifier
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Different ways to get regression models:
• Equation error identifier (discussed)
• Output error approach (Landau, 1979)
• Model reference approach (Luders & Narendra, 1973)

+

P̂ (s)

M̂(s)

b̂∗(s)
λ(s)

â∗(s)
λ(s)

r yp

Figure: Model Reference Reparameterization

Modifying the reference model through feedback b̂∗(s)
λ(s) and feedforward

â∗(s)
λ(s) action, so as to match the plant transfer function.
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Homework 1

Numerically test the first identification structure and
the gradient estimator for your model.
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Further Assumptions

A4 Reference Model Assumptions
The reference model is an SISO LTI system (selected by us)

M̂(s) = km
n̂m(s)

d̂m(s)

• n̂m(s), d̂m(s) are monic, coprime polynomials of degrees l, k ≤ n.
• M(s) is strictly proper
• Its relative degree is no greater than the relative degree of the

plant P̂ (s), i.e. 1 ≤ k − l ≤ n−m
• d̂m(s) is Hurwitz

A5 Postive Real Model
M̂(s) is strictly positive real. [Show you def later.]

Objective: Estimate polynomials â∗(s), b̂∗(s) ⇐⇒ estimate P̂ (s)
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Polynomial λ̂(s)

• The polynomial λ̂(s) is a monic, Hurwitz of degree n− 1.

• Similar role as that in the equation error identifier.

• The zeros of λ̂(s) should contain those of n̂m(s) in the reference
model:

λ̂(s) = n̂m(s)λ̂0(s)

with another monic, Hurwitz polynomial λ̂0(s) of degree n− l−1.
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+

P̂ (s)

M̂(s)

b̂∗(s)
λ(s)

â∗(s)
λ(s)

r yp

Theorem (Model Matching)

There exist unique â∗(s) and b̂∗(s), in the above figure, such that the
transfer function r → yp is the plant transfer function P̂ (s).
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Proof.

Existence. The transfer function r → yp is given by

ŷp(s)

r̂(s)
=

â∗

λ̂

kmn̂m

d̂m

1− km
n̂m

d̂m

b̂∗

λ̂

=
â∗kmn̂m

λ̂d̂m − kmn̂mb̂∗
=

kmâ∗

λ̂0d̂m − kmb̂∗
,

which equals to P̂ (s) iff

λ̂0d̂m − kmb̂∗ =
km
kp

d̂p
â∗

n̂p
(C1)

The problem is therefore to find polynomials â∗, b̂∗ of degrees ≤ n−1.

A solution can be found by inspection. Divide λ̂0d̂m by d̂p : denote by

q̂ the quotient of degree k − l − 1 and let kmb̂∗ be the remainder of
degree n− 1. In other words, let

λ̂0d̂m = q̂d̂p + kmb̂∗.
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This defines b̂∗ appropriately. Eq. (C1) is satisfied if â∗ is

â∗ =
kp
km

q̂n̂p

The degree of the polynomial in RHS is m + k − l − 1, which is at
most n− 1 by assumption, s.t. the degree requirements are satisfied.

Uniqueness. Assume that ∃â∗ + δâ, b̂∗ + δb̂ satisfying

λ̂0d̂m − km

(
b̂∗ + δb̂

)
=

km
kp

d̂p
(â+ δâ)

n̂p

We find that
δâ

δb̂
= −kp

n̂p

d̂p
= −P̂

Recall that n̂p, d̂p are assumed to be coprime, while the degree of d̂p
and δb̂ are n and at most n − 1, respectively. Therefore, Eq. (C1)
cannot have any solution. ■
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â∗(s)

λ̂(s)
= a∗0 + a∗⊤(sI − Λ)−1bλ

b̂∗(s)

λ̂(s)
= b∗0 + b∗⊤(sI − Λ)−1bλ

parameters a0, b0 ∈ R and a∗, b∗ ∈
Rn−1 (Same Λ, bλ as previous but
with different dimensionality)

Filter:

ẇ(1) = Λw(1) + bλr

ẇ(2) = Λw(2) + bλyp

+

P̂ (s)

M̂(s)

b̂∗(s)
λ(s)

â∗(s)
λ(s)

r yp

The filter dimension is lower than that in the error equation identifier
– saving in computations.
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The regressor vector ϕ is

ϕ(t)⊤ :=
[
r(t) w(1)⊤(t) yp(t) w(2)⊤(t)

]
∈ R2n

and the parameter vector θ∗⊤ :=
[
a∗0 a∗⊤ b∗0 b∗⊤

]
∈ R2n

The signal coming into the reference model M̂(s) is

L−1

{
â∗(s)

λ̂(s)
r̂(s) +

b̂∗(s)

λ̂(s)
ŷp(s)

}
:= ϕ⊤(t)θ

The output of M̂(s) is yp. Therefore,
1

yp(t) = M̂
[
ϕ⊤(t)θ

]
It is similar to the linear regression model, but with the transfer
function M̂ .

1We omit the exponentially decaying term stemming from the filter.
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SPR-based Linear Regressor

The equation

yp(t) = M̂
[
ϕ⊤(t)θ

]
is a linear regressor with a strictly positive real (SPR) transfer function.

Questions:

• What is SPR?

• How to verify SPR?

• Any properties for SPR transfer functions?

• How can we design an online estimator for SPR-based linear
regressors?
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Positive Real Function

We require M̂(s) to be strictly positive real (SPR), then get the SPR
regression model:2

yp(t) = M̂
[
ϕ⊤(t)θ

]
.

Definition (Positive Real)

A rational function M̂(s) of the complex variable s = σ + jω is
positive real (SR), if

• M̂(σ) ∈ R for all σ ∈ R
• Re[M̂(σ + jω)] ≥ 0 for all σ > 0, ω ≥ 0

It is strictly positive real (SPR) if, for some ϵ > 0, M̂(s− ϵ) is PR.

2The SPR/PR originates from Network theory. A rational transfer function is
the driving point impedance of a passive network iff it is PR.
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Criterion for SPR

(Ioannou & Tao, 1987) A strictly proper function M̂(s) is SPR if and
only if

• M̂(s) is stable

• Re(M̂(jω)) > 0, for all ω ≥ 0

• limω→∞ ω2Re(M̂(jω)) > 0.

For example, the transfer function

M̂(s) =
s+ c

(s+ a)(s+ b)

is SPR is and only if a > 0, b > 0 and a+ b > c > 0.
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Positive Real Lemma

Let
G(s) = C(sI −A)−1B +D

where (A,B) is controllable and (A,C) is observable (i.e. (A,B,C,D)
is a minimal realization of G(s)). Then, G(s) is positive real ∃P =
P⊤ ≻ 0, L and W s.t.

PA+A⊤P = −L⊤L

PB = C⊤ − L⊤W

W⊤W = D +D⊤.

Kalman-Yakubovich-Popov (KYP) Lemma

In the above lemma, G(s) is strictly positive real if and only if we
replace the first equation with

PA+A⊤P = −L⊤L− ϵP, for some ϵ > 0
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Gradient Estimator for SPR-based Linear Regressors

We have the linear regressor

yp(t) = M̂
[
ϕ⊤(t)θ

]
.

with M̂(s) SPR.

Gradient Algorithm with SPR

The gradient
˙̂
θ = −γϕ(t)

(
M̂

[
ϕ⊤(t)θ̂

]
− y(t)

)
with the adaptation gain γ > 0.

The SPR error equation e = ŷ − y := M̂ [ϕ⊤θ̂]− y is

e = M̂
[
ϕ⊤(t)θ̃

]
with θ̃ := θ̂ − θ.
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Since M̂(s) is SPR, a state space realization is

ėm = Aem + bϕ⊤(t)θ̃

e = c⊤em

˙̃
θ = −γc⊤emϕ(t).

with (A, b, c⊤) a minimal realization of M̂(s) and em its internal state.

Theorem (Stability of SPR Gradient Estimator)

Assume ϕ : R+ → R2n piecewise continuous. The above realization
guarantees

• em, e ∈ L2

• em, e, θ̃ ∈ L∞

• If ϕ is PE and ϕ, ϕ̇ ∈ L∞, then the above system is globally
exponentially stable.
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Proof.

M̂(s) is SPR, thus ∃P,Q ≻ 0 such that

PA+A⊤P = −Q

Pb = c

Consider the Lyapunov function

V = γe⊤mPem + θ̃⊤θ̃,

whose derivative is

V̇ = γe⊤mPAem + γe⊤mPbϕ⊤θ̃ + γe⊤mA⊤Pem

+ γϕ⊤θ̃b⊤Pem − 2γc⊤emϕ⊤θ̃

= −γe⊤mQem ≤ 0

The first two claims follow immediately. The last point can be found
in (Sastry & Bodson, page 86). ■
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Lemma. PE through LTI Systems

Let ϕ : R+ → Rn. If

• ϕ is PE, and ϕ, ϕ̇ ∈ L∞

• Ĥ(s) is a stable, minimum phase, rational transfer function,

then Ĥ[ϕ(t)] is also PE.

Lemma. PE and L2 Signals

Let ϕ1, ϕ2 : R+ → Rn be piecewise continuous. If

• ϕ1 is PE

• ϕ2 ∈ L2

then ϕ1 + ϕ2 is PE.
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Reference Input Design

• Exponential convergence of estimation error θ̃ builds upon the PE
of ϕ, but the reference input to the plant is r(t).

• ϕ ∈ PE ⇐⇒ r is sufficiently rich of order 2n.

A single sinusoid in the input r contributes 2 points to the spec-
trum: at ±ω0.

• If r(t) is stationary and sufficiently rich of order 2n, the identified
parameter θ̂ (gradient or normalized LS estimator with covariance
resetting) will converge to θ exponentially faster.

• Any ideas on the design of identification references r in experi-
ments?

Frequency domain conditions (Sastry & Bodson, page 90)
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What have we learned?
• Parameterization of a given plant

1) Error equation approach
2) Reference model (or SPR error equation) approach

• Given a plant G(s), how to generate a linear regressor?

• Positive real function

• Positive real and KYP lemmata

• SPR gradient estimator

• Sufficient Rich Input

Homework
• Read Ch2 of (Sastry & Bodson); Understand the sufficient

richness on page 92.

• Verify if your selected plant satisfies the assumptions.

• Start your first report – applying the learned two approaches to
identify your plant and doing simulations
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Additional Reading Materials

• PE condition is necessary and sufficient to the GES of

˙̃
θ = −ϕ(t)ϕ⊤(t)θ̃

See for the GAS case:

N. Barabanov, R. Ortega, On global asymptotic stability of ẋ = −ϕ(t)ϕ⊤(t)x

with ϕ not persistently exciting. Syst. Control Lett., 109 (2017): 24-29.
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Adaptive Control

• Adaptive control: a technique of applying system identification
techniques to obtain a model of a plant and its environment and
using this model to design a controller.

• Large basket of tools: for LTI systems, the most popular may refer
to

• Self-tuning regulator (STR)

Identifier-based: separate the estimation of unknown parameters
from the design of controllers (certainty equivalence principle)

• Model reference adaptive control (MRAC) – our focus

Behavior of the controlled plant remains close to the one of a
desired model, despite uncertainties or variations in the plant.
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MRAC: Direct Approach

Model

Controller

Adjustment

mechanism

u

Controller parameters

y

ym

uc

Plant

Figure: Controller parameters are adjusted directly

4 / 62



MRAC: Indirect Approach

Model

Controller
u y

r

Plant

parameters
Controller

Figure: Controller parameters are adjusted indirectly by first estimating
parameters of a plant/process model and then designing a controller
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Motivating Example

Consider the plant

P̂ (s) =
kp

s+ ap

with kp, ap unknown. We design a reference model

M̂(s) =
km

s+ am
, am > 0

and hope that the given model can behave like the reference model.

• We may apply the control

u(t) = c0r(t) + d0y(t)

with r(t) the reference input of M̂(s).

• Two models are matched ⇐⇒ c0 =
km
kp
, d0 =

ap−am
kp

(unknown)
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cont’d
• Direct parameterization: Viewing the controller parameters
c0, d0 as the unknown parameters, i.e.

θ =
[
c0 d0

]⊤
,

it belongs the direct approach.

• Indirect parameterization: Viewing the plant parameters kp, ap
as unknown parameters, i.e.

θ =
[
kp ap

]⊤
and using θ to solve the controller parameters c0, d0, it belongs
the indirect approach.

Caveat: It is convenient to divide the algorithms into direct and
indirect, but the distinction should not be overemphasized.
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MRAC: Input-Error and Output-Error

In model reference adaptive control (MRAC), we need to generate
a linear regression equation on the unknown parameter vector θ, or
equivalently an error equation.

Two basic approaches to get error equations:

• Input Error

• Output Error
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Assumptions

A1 Plant: The plant is a SISO LTI system

ŷp(s)

û(s)
= P̂ (s) = kp

n̂p(s)

d̂p(s)

• n̂p(s), d̂p(s) are monic, coprime polynomials of degree m and n
• Strictly proper and minimum phasea

• The sign of the high-frequency gain kp is known (w.l.g. kp > 0).

A2 Reference Model:

ŷm(s)

r̂(s)
= M̂(s) = km

n̂m(s)

d̂m(s)

• n̂m(s), d̂m(s) with the same orders as plant (i.e. n and m)
• Stable and minimum phase and km > 0

A3 Reference signal: r(·) ∈ PC[0,∞) ∩ L∞.

aPlant may be unstable.
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Model Matching

Model Reference Identification

+

P̂ (s)

M̂(s)

b̂∗(s)
λ(s)

â∗(s)
λ(s)

r yp

Model Reference Adaptive Control

+c0
r u ypM̂(s)

P̂ (s)

ĉ(s)

λ̂(s)

d̂(s)

λ̂(s)

Controller structure: linear
combination of r, u, yp

u =
[
c0

ĉ(s)

λ̂(s)

d̂(s)

λ̂(s)

] ru
yp


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Control Objectives

The reference model M̂(s) – under the reference input r(t) – will
generate the reference output

ym(t) =M [r(t)].

We want to design a control u(t) for the plant P̂ (s) such that

• all the states are bounded

• the plant output yp asymptotically converges to the reference
output ym, i.e.

lim
t→∞

|yp(t)− ym(t)| = 0.

• if possible, we can estimate some unknown parameters.
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Transfer function from r to yp

From

u = c0r +
ĉ(s)

λ̂(s)
[u] +

d̂(s)

λ̂(s)
[yp]

we have

u =
λ̂

λ̂− ĉ

(
c0r +

d̂

λ̂
(yp)

)
Combining yp = kp

n̂p

d̂p
(u), we have

ŷp
r̂

=
c0kpλ̂n̂p

(λ̂− ĉ)d̂p − kpn̂pd̂

?
= M(s) = km

n̂m

d̂m

A necessary condition: λ(s) is Hurwitz (for implementation) and can
be decomposed into

λ̂(s) = λ̂0(s)n̂m(s)

with λ̂0(s) an abribtrary Hurwitz polynomial of degree (n−m− 1).
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Matching Equality

Theorem

There exist unique c∗0, ĉ
∗(s), d̂∗(s) s.t. the transfer function from r →

yp is M̂(s).

Proof. ⋆

(Existence) TF r to yp is M̂ ⇐⇒ matching equality is satisfied

(λ− ĉ∗)d̂p − kpn̂pd̂
∗ = c∗0

kp
km

λ̂0n̂pd̂m (S1)

The solution can be found by inspection. Divide λ̂0d̂m by d̂p, let q̂

be the quotient (of degree n −m − 1) and −kpd̂∗ the remainder (of
degree n− 1). Thus, a feasible solution is

d̂∗ =
1

kp

(
q̂d̂p − λ̂0d̂m

)
, ĉ∗ = λ− q̂n̂p, c∗0 =

km
kp
.
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cont’d

(Uniqueness) Assume ∃c0 = c∗0 + δc0, ĉ = ĉ∗ + δĉ, d̂ = d̂∗ + δd̂
satisfying (S1). The following equality must then be satisfied

δĉd̂p + kpn̂pδd̂ = −δc0
kp
km

λ̂0n̂pd̂m (3.2.10)

Recall that d̂p, n̂p, λ̂0 and d̂m have degrees n, m, n −m − 1 and n,

respectively, with m ≤ n − 1, and δĉ and δd̂ have degrees at most
n− 2 and n− 1. Consequently, the RHS has degree 2n− 1 and LHS
has degree at most 2n− 2.

No solution exists unless δc0 = 0, so that c∗0 is unique. Let, then,
δc0 = 0, so

δĉ

δd̂
= −kp

n̂p
n̂p

= −P̂ ,

which has no solution since n̂p, d̂p are coprime. ■
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Remarks

• The coprimeness of n̂p, d̂p guarantees the uniqueness.
Otherwise, there still exist feasible solutions.

• When model matching occurs, the forward block actually cancels
the zeros of P̂ (s) and replaces them by the zeros of M̂(s), i.e.

λ̂

λ̂− ĉ∗
=
λ̂0n̂m
q̂n̂p

• Alternative structures: (Callier & Desoer, 1982)

-

M̂(s)

P̂ (s)

n̂+f(s)
dc(s)

n̂π(s)
dc(s)

r yp
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Linear Parameterized Controller

+c0
r u ypM̂(s)

P̂ (s)

ĉ(s)

λ̂(s)

d̂(s)

λ̂(s)

u =
[
c0

ĉ(s)

λ̂(s)

d̂(s)

λ̂(s)

] ru
yp

 =
[
c0 c⊤ d0 d⊤

]︸ ︷︷ ︸
θ⊤


r

π̂(s)

λ̂(s)
u

yp
π̂(s)

λ̂(s)
yp


︸ ︷︷ ︸

ϕ(t)
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State-Space Realization
Recall

(sI − Λ)−1bλ =
1

λ̂(s)

[
1 s . . . sn−1

]⊤
:= π(s).

with

Λ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−λ1 −λ2 · · · · · · −λn

 bλ =


0
...
0
1

.

We have
ĉ(s)

λ̂(s)
= c⊤(sI − Λ)−1bλ

d̂(s)

λ̂(s)
= d⊤(sI − Λ)−1bλ + d0
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The state-space realization is

ẇ1 = Λw1 + bλu

ẇ2 = Λw2 + bλyp

and the controller is
u = ϕ⊤(t)θ

where

θ :=


c∗0
c∗

d∗0
d∗

 ∈ R2n, ϕ(t) :=


r
w1

yp
w2

 .
• No plant model or information of θ. Instead, we use

u = ϕ⊤(t)θ̂

• We need to design online identifiers and get the error equations.
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Outline

1 Motivation

2 Model Reference Adaptive Control Problem

3 Output Error Direct MRAC

4 Input Error Direct MRAC

5 Indirect Adaptive Control
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Input Error vs Output Error

• In direct adaptive control, identification is designed directly iden-
tifying the the controller parameters

θ = col(c∗0, c
∗, d0, d

∗).

• To get linear error equation, we may define

Output Error: The difference between the plant output yp and
the reference output

eo := yp − ym = yp − M̂ [r]

Input Error:
ei:= M̂−1(eo) =M−1(yp)− r

:= rp − r

with rp = M̂−1(P̂ (u)).
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Matching plant and reference model requires the matching equation:

(λ̂− ĉ∗)d̂p − kpn̂pd̂
∗ = c∗0

kp
km

λ̂0n̂pd̂m

=⇒ 1− ĉ∗

λ̂
− kp

n̂p

d̂p

d̂∗

λ̂
= c∗0

kpn̂p

d̂p

d̂m
kmn̂m

=⇒ 1− ĉ∗(s)

λ̂(s)
− d̂∗(s)

λ̂(s)
P̂ (s) = c∗0M̂

−1(s)P̂ (s)

=⇒ M̂(s) = c∗0P̂ (s) + M̂(s)

(
ĉ∗(s)

λ̂(s)
+
d̂∗(s)

λ̂(s)
P̂ (s)

)

where we used λ̂(s) = λ̂0(s)n̂m(s).

22 / 62



Applying to the plant input u:

M̂ [u] = c∗0yp+M̂

 ĉ
∗(s)

λ̂(s)
[u] +

d̂∗(s)

λ̂(s)
[yp]︸ ︷︷ ︸

ϕ̄⊤(t)θ̄

 , θ̄ :=

c∗d∗0
d∗

 , ϕ̄(t) :=
w1

yp
w2

 .

Note θ = col(c∗0, θ̄). Thus, we have an SPR regressor-like equation:

yp :=
1

c∗0
M̂ [u− ϕ̄⊤θ̄]

Caveat:

• M̂(s) is strictly positive real (SPR) – relative degree 1

• Unknown c∗0
• True for any u
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Output Error Equation (Relative Degree 1)

Select the input u as the predefined structure

u(t) = ϕ⊤θ̂

with θ̂ the estimate of θ.

Identifier error equation:

eo = yp − ym =
1

c∗0
M̂ [u− ϕ̄⊤θ̄]− M̂(r)

=
1

c∗0
M̂
[
(ĉ0 − c∗0)r + ϕ̄⊤(ˆ̄θ − θ̄∗)

]
=

1

c∗0
M̂ [ϕ⊤(t)θ̃(t)]

with the estimation error θ̃ := θ̂ − θ

Gradient identifier
˙̂
θ = −γeoϕ.
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Output-Error Direct MRAC (Relative Degree 1)
• Plant: P̂ (s), relative degree 1, Assumption A1 (known direction
kp > 0, strictly proper, minimum phase)

• Reference signal: r(t), A3: PC[0,∞) ∩ L∞
• Control Law:

ẇ1 = Λw1 + bλu

ẇ1 = Λw2 + bλyp

u = ϕ⊤(t)θ̂, ϕ = col(r, w1, yp, w2)

• Adaptive Law:

˙̂
θ = −γeoϕ, γ > 0

eo = yp − ym, ym = M̂ [r]

• Design parameters:
1 Adaptation gain γ > 0
2 Reference model: M̂(s) satisfying A2 (stable, minimum phase)
3 Filter parameters: Λ, bλ s.t. det(sI − Λ) = n̂m(s)
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Stability for OE Direct MRAC (Relative Degree 1)

Theorem

The output error direct model reference adaptive control, summarized
above, guarantees that:

i) (Lyapunov stable) All signals in the closed-loop plant are
bounded;

ii) (Asymptotic convergence of OE) Output tracking error eo
converges to zero asymptotically for any r ∈ L∞, i.e.a

lim
t→∞

|ym(t)− yp(t)| = 0.

iii) If ϕ is persistently exciting (PE), then the adaptive system is
exponentially stable and

lim
t→∞

|θ̂(t)− θ| = 0 (exp.).

aAttention: Not a claim on asymptotic stability!
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State-Space Realization

To prove the above theorem, we need to write down the state space
realization of the closed-loop dynamics.

The plant P̂ (s) has a minimal realization (Ap, bp, c
⊤
p ), thus the plant

and the filters are given by

ẋp = Apxp + bpu

y = c⊤p xp

ẇ1 = Λw1 + bλu

ẇ2 = Λw2 + bλc
⊤
p xp

with the control
u = ϕ⊤(t)θ̂.
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Define χ := col(xp, w1, w2) and write compactly as

χ̇ = Aoχ+Bcu

yp = Ccχ

with

Ao :=

 Ap 0 0
0 Λ 0

bλc
⊤
p 0 λ

 , Bc :=

bpbλ
0


Cc :=

[
c⊤p 0 0

]
The input = ϕ⊤θ̂, so we add and subtract the desired input ϕ⊤θ:

χ̇ = Aoχ+Bcϕ
⊤θ +Bc( u− ϕ⊤θ︸ ︷︷ ︸

adaptation error

)

= Amχ+Bmc
∗
or +Bc(u− ϕ⊤θ)

Without the last error term, it would become the reference model!
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Hurwitz Stability of Ac

That isa

M̂(s) = Cm(sI −Am)
−1Bmc

∗
o.

Note that this is not a minimal realization.

• However, using the matching equation to calculate the transfer
function, by avoiding cancellation, its denominator is

c∗0 · d̂m(s)λ̂(s)λ̂0(s)n̂p(s)

• The additional term is λ̂(s)λ̂0(s)n̂p(s) is stable. Hence, Ac is
stable.

• The reference model (not minimal realization) is

χ̇m = Amχm +Bmc
∗
or.

aThe matrices (Am, Bm, Cm) can be found in (Sastry & Bodson, page 135).
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Overall Closed-Loop Dynamics

Defining the state error e := χm−χ and the parameter error θ̃ := θ̂−θ,
and the output error eo := ym − yp, the overall dynamics is[

ė
˙̃
θ

]
=

[
Am B′

mϕ̃
⊤(t)

−γCm 0

] [
e

θ̃

]
eo = Cme

with B′
m := Bmc

∗
0

It looks like LTV, but it is not! This is because ϕ is indeed a
function of states.
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Proof. (Stability of OE Direct MRAC, Relative Degree 1)

Since the reference model M̂(s) is SPR, using the MKY Lemma (the
version of KYP lemma for non-minimal realizations): ∃Pm = P⊤

m , a
vector q, a small constant ρ > 0 and Lc = L⊤

c ≻ 0 s.t.

PmAm +A⊤
mPm = −qq⊤ − ρLc

PmB
′
m = Cm.

Select the candidate Lyapunov function

V (θ̃, e) = e⊤Pme+
1

γ
θ̃⊤θ̃,

then

V̇ = −e⊤qq⊤e− ρe⊤Lce+ 2e⊤PmB
′
mϕ

⊤θ̃ +
2

γ
θ̃
˙̃
θ

= −e⊤qq⊤e− ρe⊤Lce ≤ 0.

It leads to θ̃, e ∈ L∞.
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Integrating V̇ and taking t→ ∞,

V (∞)− V (0) =

∫ ∞

0

(
−e⊤qq⊤e− ρe⊤Lce

)
dt.

Since V (∞) := limt→∞ V (t) is bounded, we have e ∈ L2. It is also
straightforward to show ė = Ame+B′

mϕ̃(t)θ̃ ∈ L∞. According to the
Barbalat’s lemma, the signal e(t) → 0 as t→ 0. Note that eo = Cme,
thus we have

lim
t→∞

|ym(t)− yp(t)| = 0.

In the identification part, we have shown that if ϕ is PE, then θ̃ → 0
exponentially as t→ 0.a ■

aHere, it is not practically useful to impose the PE condition on the
intermediate signal ϕ. Instead, we are more interested in the conditions on r(·).
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Strict Lyapunov Function ⋆
We are indeed interested in the stability of the system[

ė
˙̃
θ

]
=

[
A Bo(t)

−γBo(t)P 0

] [
e

θ̃

]

If Bo(t) is PE, selecting a sufficient large ρ > 0, we may select the
following strict Lyapunov function, via Mazenc’s methoda

V (t, e, θ̃) =ρ

(
e⊤Pe+

1

γ
|θ̃|2
)
− e⊤Bo(t)θ̃

− 1

4
θ̃⊤
(∫ ∞

0
et−τBo(τ)

⊤Bo(τ)dτ

)
θ̃

satisfying
a1|col(e, θ̃)|2 ≤ V (t, e, θ̃) ≤ a2|col(e, θ̃)|2

V̇ (t, e, θ̃) ≤ −a3|col(e, θ̃)|2

a(Loria, Pantely & Maghenem, 2020)
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Output Error Direct MRAC (Relative Degree >1) ⋆

• For the case of relative degree one, the output error is

eo := yp − ym =
1

c∗0
M̂(ϕ⊤θ̃).

• We impose the condition on relative degree, since we need the
SPR of M̂(s) for stability proof.

• It can be saved for higher relative degree!

Modifier SPR Output Error

e′o =
1

c∗0
M̂L̂

[
v̄⊤θ̃ − ρv̄⊤v̄e′o

]
v̄ = L̂−1(ϕ̄)

˙̄̂
θ = −γe′ov̄ Modified SPR gradient
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e′o =
1

c∗0
M̂L̂

[
v̄⊤θ̃ − ρv̄⊤v̄e′o

]
v̄ = L̂−1(ϕ̄)

˙̄̂
θ = −γe′ov̄ Modified SPR gradient

• L̂(s) is designed by us to make M̂(s)L̂(s) SPR
• Its inverse L̂(s) is stable, minimum phase of relative degree
n−m− 1

• We may verify
e′o = yp − ym︸ ︷︷ ︸

eo

+ya

with the augmented error:

ya :=
1

c∗o
M̂L̂

[
(L̂−1 ˆ̄θ − ˆ̄θ⊤L̂−1)[ϕ̄] + ρv̄⊤v̄e′o

]

In the Input-Error method, we need not consider relative degree!
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1 Motivation

2 Model Reference Adaptive Control Problem

3 Output Error Direct MRAC

4 Input Error Direct MRAC

5 Indirect Adaptive Control
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Input Error Equation: Motivation

Output Error: eo := yp − ym = yp − M̂ [r]

Input Error: ei:= M̂−1(eo) =M−1(yp)− r := rp − r
Different ways to obtain error equations (or linear regressors).

In OE, we use the matching equation to get

(λ̂− ĉ∗)d̂p − kpn̂pd̂
∗ = c∗0

kp
km

λ̂0n̂pd̂m

=⇒ 1− ĉ∗

λ̂
− kp

n̂p

d̂p

d̂∗

λ̂
= c∗0

kpn̂p

d̂p

d̂m
kmn̂m

=⇒ 1− ĉ∗(s)

λ̂(s)
− d̂∗(s)

λ̂(s)
P̂ (s) = c∗0M̂

−1(s)P̂ (s)

=⇒
((((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhhh

M̂(s) = c∗0P̂ (s) + M̂(s)

(
ĉ∗(s)

λ̂(s)
+
d̂∗(s)

λ̂(s)
P̂ (s)

)
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In IE, we apply an arbitrary input u to the second last equation:

u−

(
ĉ∗

λ̂
[u] +

d̂∗

λ̂
[yp]

)
︸ ︷︷ ︸

ϕ̄⊤(t)θ̄

= c∗0M̂
−1[yp]

By fixing u = ϕ⊤θ̂ = ĉor + ϕ̄⊤(t)ˆ̄θ, we have

ϕ̄⊤θ̄ = ĉ0r + ϕ̄ ˆ̄θ − c∗0M̂
−1[yp]

=⇒ ĉ0 (M̂
−1[yp]− r)︸ ︷︷ ︸

Input error: ei

=
[
M̂−1[yp] ϕ̄⊤

]︸ ︷︷ ︸
ψ⊤
1 (t)

θ̃

(Preliminary) Input Error Equation

ei =
1

ĉo
ψ⊤
1 (t)θ̃

38 / 62



Input Error Equation: Motivation

This is the motivation of IE equations, but it is not implementable:

• Relative degree of M̂(s) is at least 1, so its inverse is not proper.
(Make sense in analysis but not implementable)

• In order to get the IE error equation, we fixed u = ϕ⊤θ̂. This
is not crucial, but can be avoided to decouple identification and
control.

• We are careless about the initial condition, since the plant P̂ (s)
may be unstable.
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Implementable Input-Error Equation
• M̂(s) is minimum phase with relative degree n−m, so we may

select any stable minimum phase TF L̂−1 of relative degree
n−m, then

(M̂L̂)−1 is proper and stable.

and

L̂−1[rp] = (M̂L̂)−1[yp]

which is implementable.
• In the motivating case, we have

1− ĉ∗(s)

λ̂(s)
− d̂∗(s)

λ̂(s)
P̂ (s) = c∗0M̂

−1(s)P̂ (s)

Applying L̂−1(s)[·],

L̂−1(s)−L̂−1(s)
ĉ∗(s)

λ̂(s)
=

[
L̂−1(s)

d̂∗(s)

λ̂(s)
+ c∗0(M̂(s)L̂−1(s))−1

]
P̂ (s)
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• We are able to use L̂−1 to deal with the unstable poles of P̂ (s).

• Applying to an arbitrary input u(t), we have

L̂−1 d̂
∗

λ̂
[yp] + c∗0(M̂L̂)−1[yp] = L−1[u]− L̂−1 ĉ

∗

λ̂
[u] + ϵ(t)

• Since θ := col(c∗0, θ̄) is constant, we may take it outside the TF:

L̂−1[ϕ̄⊤]θ̄ = L̂−1[ϕ̄⊤θ̄]

= L̂−1

[
ĉ∗

λ̂
[u]− d̂∗

λ̂
[yp]

]
= L̂−1[u]− c∗0(M̂L̂)−1[yp] + ϵ(t)

Implementable Input-Error Regressor

L̂−1[u] = v⊤(t)θ + ϵ(t),

with
v⊤(t) :=

[
L̂−1(rp) L̂−1(ϕ̄⊤)

]
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Input Error Identifier Structure

We define the modified input error

eo := v⊤(t)θ̂ − L̂−1(u)

which satisfies the linear error equation

eo = v⊤(t)θ̃ + ϵ(t).

• All signals here are available.

• When obtaining the linear error equation, we do not fix
u = ϕ⊤θ̂ – decoupling identification and control!

• Useful in the presence of actuator saturation.
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Input-Error Direct MRAC

• Plant: P̂ (s), ((((((((hhhhhhhhrelative degree 1, Assumption A1 (known direction
kp > 0, strictly proper, minimum phase) and A4

A4 Bound on the High-Frequency Gain kp
Assume that an upper bound on kp is known, i.e.

kp ≤ kmax.

• Reference signal: r(t), A3: PC[0,∞) ∩ L∞

• Control Law:

ẇ1 = Λw1 + bλu

ẇ1 = Λw2 + bλyp

u = ϕ⊤(t)θ̂, ϕ = col(r, w1, yp, w2)
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• Identifier Structure:

v⊤(t) :=
[
(M̂L̂)−1[yp] L̂−1(w⊤

1 ) L̂−1[yp] L̂−1[w⊤
2 ]
]

ei := v⊤(t)θ̂ − L̂−1[u] (Input Error)

• Adaptive Law (Normalized Gradient with Projection):

˙̂
θ =

−γ eiv

1 + α|v|2
otherwise

0 if ˙̂c0 < 0 or ĉ0 =
km
kmax

ei = yp − ym, ym = M̂ [r]

• Design parameters:
1 Adaptation gain γ > 0
2 Normalization parameter α > 0
3 Reference model: M̂(s) satisfying A2 (stable, minimum phase)
4 Filter parameters: Λ, bλ s.t. det(sI − Λ) = n̂m(s)
5 L̂−1 stable, minimum phase TF of relative degree n−m

Normalization & projection are important for stability!
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Stability of IE Direct MRAC

Theorem

Consider the input error direct MRAC described above, with initial
condition in an arbitrary Bh. Then,

i) (Lyapunov stable) All internal states are bounded;

ii) (Asymptotic convergence of OE) Output tracking error eo
converges to zero asymptotically for any r ∈ L∞, i.e.a

lim
t→∞

|ym(t)− yp(t)| = 0.

iii) If v is persistently exciting, then the adaptive system is
exponentially stable and

lim
t→∞

|θ̂(t)− θ| = 0 (exp.).

aAttention: Not a claim on asymptotic stability!
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Sketch of Proof
Full proof can be found in (Sastry & Bodson, page 143) and
(Ioannou & Sun, page 390).

Step 1. Regressor bound & existence of solutions

From the properties of the projected, normalized identifier, we have

|v⊤θ̃| = |β(t)|∥v(·)∥∞ + |β(t)|

β :=
v⊤θ̃

1 + ∥v(·)∥∞
∈ L2 ∩ L∞

θ̃ ∈ L∞,
˙̃
θ ∈ L2 ∩ L∞

|θ̃(t)| ≤ |θ̃(0)|
ĉ0 ≥ cmin > 0 (due to projection)

Similar to the OE case, the closed-loop dynamics can be “viewed” as
an LTI system with an LTV controller and bounded feedback gains –
solutions are well-defined.
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Sketch of Proof

Step 2. Express the plant input & output in terms of control error ϕ⊤θ̃

yp = ym +
1

c∗0
M̂(ϕ⊤θ̃)

u = P̂−1M̂

(
r +

1

c∗0
ϕ⊤θ̃

)
Define an auxiliary signal m2

f := 1 + ∥u∥2 + ∥yp∥2 with L2e-norm in
some interval, we have

mf ≤ c+ c∥ϕ⊤θ̃∥

Using the Swapping Lemma for TF, we have

∥ϕ⊤θ̃∥ ≤ c

α0
mf + cα∗n

0 ∥g̃mf∥

with g̃2 := ϵ2n2s + | ˙̃θ|2 + ϵ2 ∈ L2. (Tricky for this step)
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(Swapping Lemma) Let ϕ, θ̃ : R+ → Rn and ˙̃
θ ∈ C1. Let Ĥ(s) be a

proper rational TF. If Ĥ(s) is stable, with a minimal realization

Ĥ(s) = c⊤(sI −A)−1b+ d,

then
Ĥ(ϕ⊤θ̃) = Ĥ(ϕ⊤)θ̃ + Ĥc(Ĥb(ϕ

⊤)
˙̃
θ)

with
Ĥb = (sI −A)−1b, Ĥc = −c⊤(sI −A)−1.
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Sketch of Proof

Step 3. Apply the Bellman-Gronwall Lemma to establish boundedness.

From the last step, we may get

m2
f ≤ c+ c

∫ t

0
α∗2n
0 g̃(τ)2m2

f (τ)dτ.

Using the B-G lemma and g ∈ L2, we have mf ∈ L∞. Then, consider-
ing all the transfer functions, we can show that all signals are bounded.

Step 5. Show tracking error eo := yp − ym → 0.

Check eo ∈ L2 and ėo ∈ L∞ and apply the Barbalat’s lemma.

Step 4. Verifying θ̃ → 0 if v is PE.

49 / 62



Comparison: IE vs OE

• Traditional starting point in MRAC is to study eo := yp − ym

• Stability proof in OE-MRAC requires the SPR condition of P̂ (s)

- Limited to the systems with relative degree 1
- Otherwise using the augmented error (complicated and
non-robust)

IE-MRAC does not have this issue.
• Error term:

- OE error equation relies on the input equal to u = ϕ⊤(t)θ̂
- IE error equation can use arbitrary inputs (still work under
saturation)

Decoupling identifier and controller (possible to replace the
gradient estimator by other estimators)
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Outline

1 Motivation

2 Model Reference Adaptive Control Problem

3 Output Error Direct MRAC

4 Input Error Direct MRAC

5 Indirect Adaptive Control
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Indirect Adaptive Control

• Use the identifier in the last lecture to estimate plant parameters

kp, n̂p(s), d̂p(s)

• Use the matching equation to compute the controller parameters

c0, ĉ(s), d̂(s)

+c0
r u ypM̂(s)

P̂ (s)

ĉ(s)

λ̂(s)

d̂(s)

λ̂(s)
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Recall the plant

ŷp(s)

û(s)
= P̂ (s) =

αns
n−1 + · · ·+ α1

sn + βnsn−1 + · · ·+ β1

Introduce a monic n-th order Hurwitz (but arbitrary) polynomial

λ̂(s) = sn + λns
n−1 + · · ·+ λ1.

Then, from

ŷp
û

:= kp
n̂p

d̂p
=⇒ kpn̂p(s)û(s)− d̂p(s)ŷp(s) = 0

=⇒ λ̂(s)ŷp(s) = kpn̂p(s)û(s) + (λ̂(s)− d̂p(s))ŷp(s).
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Or equivalently

ŷp(s) =
αns

n−1 + · · ·+ α1

λ̂(s)
r̂(s)+

(λn − βn)s
n−1 + · · ·+ (λ1 − β1)

λ̂(s)
ŷp(s),

with the associated the plant parameters

a =
[
α1 . . . αn

]
, b =

[
λ1 − β1 . . . λn − βn

]
.

Linear Regressor

Using the filters

ẇ1 = Λw1 + bλu

ẇ2 = Λw2 + bλyp (Shared by Identifier & Controller)

We have the linear regressor on unknown parameters [a⊤ b⊤]⊤.
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For simplicity, we define

• Plant parameter η := [a1, . . . , am+1, 0, . . ., b1, . . . , bn]
⊤

• “Perfect” control parameter
θ := col(c∗0, θ̄) := [c∗0, c1, . . . , cn, d1, . . . , dn]

⊤

Attention:

1 No d0 term here!

2 Since the relative degree of P̂ (s) is known, we needn’t estimate
am+2, . . .

Linear Regressor (cont’d)

yp = ϕ⊤w(t)η

with
ϕw = col(w1,1, . . . , w1,m, 0, . . . , 0, w2)
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Indirect MRAC

• Plant: P̂ (s), ((((((((hhhhhhhhrelative degree 1, Assumption A1 (known direction
kp > 0, strictly proper, minimum phase) and A4

A7 Bound on the High-Frequency Gain kp
Assume that an upper bound on kp is known, i.e.

kp≥ kmin > 0.

• Reference signal: r(t), A3: PC[0,∞) ∩ L∞

• Control Law:

ẇ1 = Λw1 + bλu

ẇ1 = Λw2 + bλyp

u = ϕ⊤(t)θ̂, ϕ = col(r, w1, w2) (No yp!)

Be careful about the dimensionality.
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• Identifier Structure:

ϕ⊤w = col(w1,1, . . . , w1,m, 0, . . . , w2)

e = ϕ⊤η̂ − yp

• Adaptive Law (Normalized Gradient with Projection):

˙̂η = −γ eϕw
1 + ρ|ϕw|2

If âm+1 = kmin and ˙̂am+1 < 0, then let ˙̂am+1 = 0.
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• Design parameters:

1 Adaptation gain γ > 0
2 Normalization parameter ρ > 0
3 Reference model: M̂(s) satisfying A2 (stable, minimum phase)

4 Filter parameters: Λ, bλ s.t. det(sI − Λ) = λ̂(s) and λ̂ = λ̂0n̂m

• Translating Identifier Parameter → Control Parameter

Define q̂ := λ̂0d̂m
(λ̂−b̂)

:

ĉ = λ̂− 1

âm+1
q̂â

d̂ =
1

am+1
(q̂λ̂− q̂b̂− λ̂0d̂m)

ĉ0 =
km
am+1
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Stability of Indirect MRAC

Theorem

Consider the indirect MRAC described above, with initial condition in
an arbitrary Bh. Then,

i) (Lyapunov stable) All internal states are bounded;

ii) (Asymptotic convergence of OE) Output tracking error eo
converges to zero asymptotically, i.e.

lim
t→∞

|ym(t)− yp(t)| = 0,

and the regressor error converges to zero.

See (Sastry & Bodson, page 341) for proof.
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Why need the sign and upper bound of kp?

In MRAC, we need to identify c∗0 or 1
c∗0
:

• If we identify 1
c∗0

(as done in indirect MRAC), the input

u = ĉ0r + ϕ̄⊤(t)ˆ̄θ will be unbounded if 1
ĉ0

→ 0

The sign and lower bound on 1
c∗0

(i.e. those of kp) help

us avoid the zero-cross issue with projection.

• If we identify c0 (in direct MRAC), then

ĉ0 = 0, ˆ̄θ = 0 =⇒ u = 0, ei = 0

No adaptation will occur
˙̂
θ = 0, although yp − ym does

not tend necessarily to zero and may even be unbounded.

To avoid this above issues, we require the sign and upper bound of kp.
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Discussions

• Alternate Model Reference Schemes: Flexible by combining vari-
ous identification and control structures 1

• Adaptive Pole Placement Control: Choose a particular reference
model

M̂(s) = km
n̂p(s)

d̂m(s)
, i.e. n̂m(s) = n̂p(s).

Only assigning closed-loop poles – n̂p(s) is replaced by its es-
timate in the reference model M̂(s). The matching equation
becomes a Diophantine equation

(λ̂− ĉ∗)d̂p − kpn̂pd̂
∗ =

(
c∗0
kp
km

)
λ̂d̂m,

which is not always solvable, unlike MRAC.

1G.C. Goodwin & D.Q. Mayne. A parameter estimation perspective of
continuous time model reference adaptive control, Automatica 23.1 (1987): 57-70.
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What have we learned?

• Model reference adaptive control

- Reference model
- Similar control structure
- Different identifiers

• Direct MRAC

- Input error direct MRAC
- Output error direct MRAC (relative degree 1)

• Indirect MRAC
• Stability:

- Asymptotic convergence for general reference r(t);
- Exponential stability with PE.
- Same stability and convergence properties for these three schemes

• IE Direct MRAC and Indirect MRAC are attractive:

- Linear error equations
- SPR conditions
- Decoupling between identification and control
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Parametric and Unstructured Uncertainty

• Designers do not have a detailed model:

- Too complex
- Not completely understood of its dynamics
- Model reduction

• For stable systems, we may obtain Bode diagrams.

- Data beyond a certain frequency ωH is unreliable –
measurements are poor (noise)

- Referred as high-order dynamics – wish to neglect

logω

log |β̂(jω)|

ω1 ω2 ω3 ω4 ω5 ωH

logω

∠β̂(jω)

ω1 ω2 ω3 ω4 ωH
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Adaptive Control vs (Non-adaptive) Robust Control

Assume the goal is the following: select a reference model M̂(s) such
that the plant output yp(t) tracks the reference output yr(t).

Non-Adaptive Robust Control: Use poor data at high-frequencies to
get a nominal model P̂ ∗(s). The actual plant P̂ (s) satisfies

P̂ (s) = P̂ ∗(s) + Ĥa(s) (Additive uncertainty)

or

P̂ (s) = P̂ ∗(s)[1 + Ĥm(s)] (Multiplicative uncertainty)

• |Ĥa(jω) and |Ĥm(jω)| are unknown but bounded.

• Design an LTI controller (feedforward + feedback) to match the
reference model M̂(s) over the frequency range of interest

• At least preserve stability and reduce sensitivity
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Adaptive Control vs (Non-adaptive) Robust Control

Adaptive Control:

• Designer distinguishes the parametric uncertainty in the pole/zero
locations and unstructured uncertainty.

P̂ (s) = P̂θ(s) + Ĥau(s)

or
P̂ (s) = P̂θ(s)[1 + Ĥmu(s)]

Plant model P̂θ(s) – still unstructured uncertainty Ĥau & Ĥmu

• Identify the pole-zero locations on-line – during operation

• Better match to M̂(s) but yielding nonlinear time-varying control

• Added complexity is made worthwhile when non-adaptive control
has unsatisfactory performance
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Adaptive Control vs (Non-adaptive) Robust Control

Example

Unstable plant:

P̂ (s) =
m

(s− 1 + ϵ)(s+m)

with ϵ > 0 small and m > 0 large.

• Robust Control: Select nominal model P̂ = 1
s−1 , with

uncertainty

Ĥm(s) =
−s2 + s− ϵ(s+m)

(s− 1 + ϵ)(s+m)
(unstable)

• Adaptive Control: Parameterized nominal model P̂θ(s) =
1

s+θ
(θ = −1 + ϵ unknown), with uncertainty

Ĥmu(s) = − s

s+m
(stable)
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Robustness of Adaptive Systems

How will the adaptive algorithms behave with the true plant P̂ (s)?

How can we maintain stability in the presence of uncertainties?
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A Young PhD’s Story
Not to mention lively sessions at conferences

“I went to a fight, and an adaptive control session broke
out!”

— Bob Bitmead

Figure: 1981 IEEE CDC, San Diego
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“Earlier versions of the above paper have been presented at
several conferences since 1980. These presentations have
certainly contributed towards making the sessions on adap-
tive control at the CDC conferences lively and fun. The
discussions have also inspired a lot of work on robustness of
adaptive systems which have significantly contributed to our
understanding of such systems.
· · ·
I would like to thank you, Charles, for sticking your neck out
as a young Ph.D. and challenging ‘the adaptive establish-
ment.’ ...” — Karl J. Astrom
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The Rohrs Example
Consider a first-order plant

P̂θ(s) =
kp

s+ ap
, kp = 2, ap = 1

and select the SPR reference model

M̂(s) =
3

s+ 3

Matching control parameters c∗0 =
km
kp

= 1.5, d∗o =
ap−am

kp
= −1

Output Error MRAC

u = ĉ0r + d̂0yp

eo = yp − ym

˙̂c0 = −γeor

˙̂
d0 = −γeoyp
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The Rohrs Example (cont’d)

Real Plant

Actual plant and nominal model not exactly matched:

P̂ (s) =
2

s+ 1
· 229

s2 + 30s+ 229︸ ︷︷ ︸
unmodeled dynamics

• Poles of uncertainty: −15± 2j

• Approximately equal to 1 at low frequency

• Unmodeled dynamics is well-damped, stable (Traditional view: it
should be innocuous)
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The Rohrs Example: Simulation 1

A large constant reference input r(t) = 4.3 and noise free

Plant output yp Controller paremater estimates

The output error initially converges to zero, but eventually diverges
to infinity.
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The Rohrs Example: Simulation 2

Reference r(t) = 0.3 + 1.85 sin 16.1t has a small constant and large
high-frequency component, and noise free

Plant output yp Controller paremater estimates

The output error diverges at first slowly, and then more rapidly to
infinity.
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The Rohrs Example: Simulation 3

Constant reference input r = 2 and a small output disturbance n =
0.5 sin 16.1t

Plant output yp Controller paremater estimates

The output error initially converges to zero. After staying in the
neighborhood of zero for an extend period of time, it diverges to

infinity.
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A Lesson from Rohrs Examples

• The Rohrs examples stimulated much research about the robust-
ness of adaptive systems.

• It shows the bounded-input-bounded-state stability properties for
the MRAC is not robust to uncertainties. Even an arbitrary small
disturbance can destabilize an adaptive system.

• Instability mechanisms are related to the identifier.
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Nominal and Perturbed Systems

We consider properties of the nominal (or unperturbed) system

ẋ = f(t, x, 0), x(0) = x0,

and relate to properties of the perturbed system

ẋ = f(t, x, u), x(0) = x0.

Roughly, exponential stability of the nominal system implies the
robustness of the perturbed system w.r.t. external perturbation u.
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Theorem (Small Signal I/O Stability)

Consider the perturbed system ẋ = f(t, x, u) and the unperturbed
system ẋ = f(t, x, 0) that has a zero equilibrium. Assume f ∈ C1 and
Lipschitz w.r.t. x for x ∈ Bh, u ∈ Bc, and u ∈ L∞.

If x = 0 is exponentially stable for the unperturbed system. Then, the
perturbed system

• is small-signal L∞ stable, i.e. ∃γ1, c1 > 0 s.t. for ∥u∥∞ < c1

∥x∥∞ ≤ γ1∥u∥∞ < h.

• ∃m ≥ s.t. ∀|x0| < h
m , 0 < ∥u∥∞ < c1 implies

lim
t→∞

dist(x(t), Bδ) = 0, δ := γ1∥u∥∞ < h.

Also consider the tool of input-to-state (ISS) stability.
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Sketch of Proof
• Invoking the converse Lyapunov theorem: for exponential
stability ∃ Lyapunov function V (t, x) s.t.

α1|x|2 ≤ V (t, x) ≤ α2|x|2

∂V

∂t
+

∂V

∂x
f(t, x, 0) ≤ −α3|x|2∣∣∣∣∂V (t, x)

∂x

∣∣∣∣ ≤ α4|x|.

• Lie derivative along the perturbed system:

V̇ ≤ −α3|x|2 +
∂V

∂x
(t, x)[f(t, x, u)− f(t, x, 0)]

≤ −α3|x|2 + α4ℓu|x|∥u∥∞

≤ −1

2
α3|x|2 +

(α4ℓu)
2

2α3
∥u∥2∞

• Intuitively, a large |x| will make V̇ < 0.
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Exponential Stability and Robustness of Adaptive Systems

• Let’s consider the output error MRAC with relative degree 1. The
closed-loop dynamics is the nonlinear (bilinear) time-varying sys-
tem [

ė
˙̃
θ

]
=

[
Am Bmϕ̃⊤(t)

−γCm 0

] [
e

θ̃

]
• We have learned that if ϕ̃(t) is PE, then the above system is
exponentially stable.

• This means that if the reference signal is sufficiently exciting, we
may achieve robust performance.

• We will consider the robustness of OE-MRAC w.r.t.

- Output measurement noise
- Unmodeled dynamics
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Robustness of OE-MRAC to Noise
• y∗p - output of the plant P̂θ(s); yp - measured output affected by
noise

yp(t) = y∗p(t) + n(t) = P̂θ[u] + n(t)

• In OE-MRAC, the following terms are affected by n(t):

- 2nd part in the filter

ẇ2 = Λw2 + bλy
∗
p + bλn

- Update law

˙̃
θ = −γ(y∗p + n− ym)ϕ = −γc⊤meϕ− γnϕ

- Regression vector

ϕ =


r
w1

y∗p
w2

 = w⋆ + qnn, qn :=


0
0
n
0


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Robustness of OE-MRAC to Noise

Now, the error dynamics becomes

χ̇ = f(t, χ)︸ ︷︷ ︸
Nominal part

+p1(t, n) + P2(t, n)χ(t)

See (Sastry & Bodson, page 228) for the formulas of p1(·), P2(·), s.t.

n ∈ L∞ =⇒ ∥p1∥∞ + ∥P2∥∞ ≤ kn∥n∥∞.

If the noise n ∈ L∞, and ϕ̃ is PE, then ∃γn, cn > 0 and m ≥ 1, s.t.
∥n∥∞ < cn and |x(0)| < h

m implies

lim
t→∞

dist(χ(t), Bδ) = 0, δ = γn∥n∥∞,

and |x(t)| ≤ m|x0| < h for all t ≥ 0.
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Robustness of OE-MRAC to Unmodeled Dynamics
Assume the existence of some additive uncertainty

yp(t) = y∗p(t) +Ha[u(t)]︸ ︷︷ ︸
:=∆(t)

satisfying
∥Ha[u]t∥∞ ≤ γa∥ut∥∞ + βa, ∀t ≥ 0.

• The perturbation ∆ affects the plant input u (using u∗ to
present the nominal case):

u = u∗ + θ⊤qn∆+ θ̃⊤qnn =⇒ ∥ut∥∞ ≤ γu∥∆t∥∞ + βu

Small gain theorem:

γaγu < 1

βa + γβu
1− γaγu

< cn

S1

+

-

+

+
S2

24 / 39



Theorem (Robustness to Unmodeled Dynamics)

Consider the OE direct MRAC with relative degree 1. If the additive
perturbation Ha satisfies the above assumptions.

If ϕ̃ is PE, then, for x0, γa, β sufficiently small, the overall states

χ ∈ L∞.

We will learn the Small Gain theorem in the robust control part.
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Rohrs Example 1: High-Gain Identifier Instability

Example 1 uses a large reference input r(t) = 4.3, which is related to
the high-gain identifier instability.

• Adaptation law:
˙̂
θ = −γeo

[
r
yp

]
.

• Although not directly using a large γ > 0, multiplying r by 2
means twice of ym, yp and r, or equivalently multiplying the gain
by 4.

• Applying high-gain to LTI systems with relative degree > 2 yields
instability

• Can be simply fixed using a normalized algorithm
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Rohrs Example 2: Exciting at High-Frequency

Example 2 uses a sufficiently exciting reference r = 0.3 + 1.85 sin 16t.
Without unmodeled dynamics, ∃! values of c∗0, d

∗
0 to match r → yp.

With unmodeled dynamics, there still exists unique values of c′0, d
′
0 but

at the high-frequency ω0, i.e.

458c′0
(s+ 1)(s2 + 30s+ 229)− 458d′0

∣∣∣∣
jω0

=
3

s+ 3

∣∣∣∣
jω0

For this case, c′0, d
′
0 depends on P̂ (s), M̂(s) and also the reference r.

By attempting to match the reference model at a high frequency,
the adaptive system leads to an unstable closed-loop system.
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Rohrs Example 3: Slow Drift Instability / Insufficiently Rich

• Example 3 uses the reference not sufficiently rich (thus ϕ̃ not PE).
We have shown that for the PE case, the adaptive system is robust
to noise.

• Rohrs example with no unmodeled dynamics and θ̂ fixed

ŷp(s)

r̂(s)
=

2ĉ0

s+ 1− 2d̂0

If a constant reference r is used, then the transfer function should
be matched with the DC gain of M̂(s), i.e.

2ĉ0

1− 2d̂0
= 1.

∃ infinite numbers of feasible ĉ0 and d̂0 satisfying the above, thus

lim
t→∞

|yp(t)− ym(t)| = 0.
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• If the noise n(t) appears in yp, then ĉ0, d̂0 would move along the
line

2ĉ0

1− 2d̂0
= 1

leaving eo = yp − ym at zero.

• Part of adaptive law becomes

˙̂
d0 = −γy∗p(y

∗
p − ym)− γymn− γn2

slowly drifting d̂0 toward the negative direction

Figure: Caption
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Robustness Enhancement

PE relies on the reference r(t) – not realistic for many scenarios.

Intuitive Ideas
• The Usage of Prior Information

If the plant is fairly well modeled, except for a few un-
known/uncertain components, we may integrate them in adaptive
control – reducing complexity and excitation requirements.

• Choice of Reference Model and Reference Plant

The reference model must be chosen to reflect a desirable response
of the closed-loop plant – should have a bandwidth no greater than
that of the identifier, and should not have large gains in those
frequency regions (reducing effects from unmodeled dynamics).

Dual control: reference r(t) affects both the control target and
excitation conditions.
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Intuitive Ideas (cont’d)

• Time Variation of the Parameters
Plant parameters may slowly vary over time – estimator needs to
discount old input-output data.

• Robust Identification Schemes

Parameter convergence is not guaranteed in general, but is unnec-
essary to output convergence. The identifier robustness is funda-
mental to the adaptive system robustness.

Careful selection of plant order: Large number leads to numerical
issue for identification, but should be sufficient to model the plant
dynamics.

Further filter the regression vectors: to reduce the effect of noise

Monitor the excitation in the identification loop.
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Robustness: Slow Adaptation
Rabbit-vs-Tortoise in adaptive systems:

• Slow adaptation

• Fast control loop

to generate two-times scale separation for stability analysis.

Fast

Controller

Slow

Adjustment

PlantSetpoint

Controller

Parameters

yu

Large adaptation gain γ may freeze estimates (Ortega, ACC 2013)

lim
γ→∞

lim
t→∞

[|θ̃(0)| − |θ̃(t)|] = 0.
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Robustness: Deadzone

Stop updating the parameters when excitation is insufficient to
distinguish between regressor signals and noise – turn off setting a

threshold.

For example, we replace the gradient estimator by

˙̂
θ =

− γ
eϕ

1 + γϕ|ϕ|2
if |e| > ρ

0 if |e| ≤ ρ

This can be combined with different types of estimators, e.g. gradient,
RLS, normalized, with projection ...

Difficulty in selecting ρ > 0

35 / 39



Robustness: Leakage Term (σ-Modification)
Replace the parameter identifier by

˙̂
θ = −γϕe − σθ̂

with a small σ > 0

• This is stable estimator to keep θ̂ from growing unbounded. How-
ever, with PE it cannot guarantee θ̂ → θ as t → ∞.

• With a prior estimate of θ as θ̂0, it can be modified as

˙̂
θ = −γϕe − σ(θ̂ − θ̂0).

Try to bias the direction of the drift towards θ̂0 rather than 0.

• Another interesting modification is

˙̂
θ = −γϕe − σ|e|θ̂.

Retain the feature without leakage.
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Robustness: Dynamic Regression Extension

Introducing dynamic extension, it may

• act as low-pass filtering of process input/output, thus remov-
ing the effects of noise and high-frequency unmodeled dynamics
(Witenmark & Astrom, 1984)

• Improve transient performance of parameter estimation – fast con-
vergence rate (Kreisselmeir, TAC 1977) 1

• Recently new method: Dynamic Regressor Extension and Mixing
(DREM) (Ortega et al., Ann. Rev. Control 2020) 2

1G. Kreisselmeier, Adaptive observers with exponential rate of convergence, IEEE
Trans Autom. Control, vol. 22, pp. 2–8, 1977.

2Ortega, Nikiforov & Gerasimov, On modified parameter estimators for identi-
fication and adaptive control: A unified framework and some new schemes, Ann.
Rev. Control, vol. 50, pp. 278–293, 2020.
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Beyond

• Multi-input-multi-output systems

G(s) ∈ Cn×m

• Nonlinear adaptive control

ẋ = f(x) + ϕ(x, t)⊤θ + g(x)u.

• Self-tuning adaptive control

• Transient performance and robustness under weak excitation

• Machine learning and adaptation
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What have we learned?

• Two methods to deal with uncertainty: Adaptive & (Non-adaptive)
Robust

• The Rohrs examples: adaptive systems may not be robust to
different types of uncertainties

• Heuristic analysis to the Rohrs examples

• Challenge “well-established” theory for young researchers

• Exponential stability implies robustness
• Some methods to improve robustness of adaptive systems

- Slow adaptation
- Dynamic regressor extension
- Leakage term (σ-modification)
- Deadzone
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Nomenclature for Lecture 3

Bowen.Yi@polymtl.ca

Nomenclature

Monic A polynomial in s with the coefficient of the highest power is 1, e.g. s2 + 2s+ 5

Hurwitz If its roots lie in C<0

Minimum phase A transfer function has numerator polynomial Hurwitz, e.g. (s+1)(s+2)

s2+5s+2

Relative degree Difference between the degrees of the denominator and numerator, e.g. Relative deg s+2
s2+2

= 1

Proper relative degree ≥ 0, e.g. s+1
s+2

Strictly proper relative degree > 0, e.g. 1
s+2

P̂ (s) = kp
n̂p(s)

d̂p(s)
Plant transfer function (to estimate or control)

αi, βj Coefficient parameters in the transfer function P̂ (s) = αnsn−1+...+α1
sn+βnsn−1+...+β1

yp, r Plant output and input

ŷp(s), r̂(s) Laplace transform of the plant’s input and output, i.e. i.e. P̂ (s) =
ŷp(s)

r̂(s)

λ̂(s) 1

λ̂(s)
is the introduced stable filter to deal with not proper terms

λ̂(s) = sn + λns
n−1 + · · ·+ λ1

â∗(s) â∗(s) = αns
n−1 + · · ·+ α1

b̂∗(s) b̂∗(s) = (λn − βn)s
n−1 + · · ·+ (λ1 − β1)

θa, θb Parameter vectors θa :=


α1

...

αn

 , θb :=


λ1 − β1

...

λn − βn



Λ, bλ Matrices in state-space realization Λ =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−λ1 −λ2 · · · · · · −λn


bλ =


0

...

0

1


w

(1)
p , w

(2)
p State space variable for the filtered signals

w(1), w(2) States in the designed filter to estimate w
(1)
p , w

(2)
p

e Output error

M̂(s) = km
n̂m(s)

d̂m(s)
Reference model (transfer function)

λ̂(s), λ̂0(s)
1

λ̂(s)
is the introduced filter to deal with not proper terms, but deg λ̂(s) = n− 1

λ̂(s) = n̂m(s)λ0(s)

â∗(s), b̂∗(s) Polynomials to match the reference model to the given plant (to estimate)
â∗(s)
λ̂(s)

= a∗
0 + a∗⊤ 1

λ̂(s)

[
1 s sn−2

]
b̂∗(s)
λ̂(s)

= b∗0 + b∗⊤ 1

λ̂(s)

[
1 s sn−2

]
ϕ Regression ϕ(t)⊤ :=

[
r(t) w(1)⊤(t) yp(t) w(2)⊤(t)

]
∈ R2n

θ Unknown parameters θ∗⊤ :=
[
a∗
0 a∗⊤ b∗0 b∗⊤

]
∈ R2n

em States for the realization of M̂(s)
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Assumptions on the Plant

A1 Plant Assumption: SISO LTI system, whose transfer function P̂ (s) =
ŷp(s)

r̂(s)
is

P̂ (s) = kp
n̂p(s)

d̂p(s)

r̂(s), ŷp(s) - Laplace transforms of input/output

n̂p(s), d̂p(s) - monic, coprime polynomials of degrees m and n

n is known, but m is unknown

Plant is strictly proper m ≤ n− 1

A2 Reference Input Assumption: Input r(·) is piecewise continuous and bounded on R+.

A3 Output Boundedness Assumption: The plant is located in a control loop such that r, yp ∈ L∞.

Assumptions on the Reference Model

A4 The reference model is an SISO LTI system (selected by us)

M̂(s) = km
n̂m(s)

d̂m(s)

n̂m(s), d̂m(s) are monic, coprime polynomials of degrees l, k ≤ n.

M(s) is strictly proper

Its relative degree is no greater than the relative degree of the plant P̂ (s), i.e. 1 ≤ k − l ≤ n−m

d̂m(s) is Hurwitz

A5 Positive Real Model: M̂(s) is strictly positive real
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